2023 Embedded Systems Week 17-22 September 2023 | Hamburg, Germany ### **2023 ESWEEK PROGRAM** #### SPONSORING SOCIETIES: #### **WELCOME TO ESWEEK 2023** Sharon Hu General Chair U. of Notre Dame, USA Alain Girault Vice-General Chair INRIA, France Heiko Falk Local Chair TU Hamburg, Germany #### Welcome to ESWEEK 2023 in Hamburg! Embedded Systems Week (ESWEEK) is the premier event covering all aspects of embedded systems and software. By bringing together three leading conferences (CASES, CODES+ISSS, and EMSOFT), two symposia, three hot-topic workshops, four special sessions, six tutorials, thirteen education classes, three software competitions with demos, and a special program on Diversity, Equity and Inclusion, ESWEEK presents attendees a wide range of choices unveiling state of the art embedded systems design and hardware/software architectures. Besides, ESWEEK 2023 features a special day program on the topic of semiconductor renaissance and its impact on embedded systems design. Following the journal-integrated publication model for the three conferences (CASES, CODES+ISSS, and EMSOFT), all regular papers presented are published in the ACM Transactions on Embedded Computing Systems. In addition, authors had the possibility to publish Late Breaking papers in IEEE Embedded Systems Letters, and Work-in-Progress papers in the ESWEEK Proceedings. The technical program on Monday, Tuesday, and Wednesday consists of 20 regular sessions and 2 special sessions from the three conferences. A strong emphasis on interaction is ensured thanks to a poster presentation for each paper, during which the participants can discuss the papers with the authors. On Tuesday we have the semiconductor renaissance special day, focusing on the one hand on Green IoT and Green ICT for the Green Transition (the morning special session), and on the other hand on Machine Learning for Embedded System Design (afternoon special session). Highlights of the ESWEEK program are three keynote talks by distinguished leaders in academia and industry. On Monday morning, Prof. Sarita Adve, from the University of Illinois at Urbana-Champaign, will give a talk on era of immersive computing and how it will shape the research agenda for embedded systems. Then, on Tuesday Morning, Dr. Heike Riel, IBM fellow from IBM Research Europe in Zurich, will give a talk on how to scale quantum computing. Finally, on Wednesday morning, Prof. Lothar Thiele, from ETH Zurich, will give a talk on resilient embedded systems in the era of machine learning. Two panels will take place: An Industry Panel on Tuesday afternoon (just before the social event), dedicated to the links between the semiconductor industry and embedded computing, and an education panel on Wednesday afternoon exploring the links between computer engineering education, embedded computing, and the semiconductor renaissance. The Test of Time Award ceremony will take place on Tuesday morning to honor the authors of articles published in previous editions of ESWEEK (respectively CASES 2008, CODES+ISSS 2007, and EMSOFT 2007), and having the highest impact. Regarding the Best Paper ceremony, it will take place on Wednesday morning, the best papers for the three conferences being selected from candidate papers presented during Monday and Tuesday regular sessions. Thursday and Friday are the days for the symposia and workshops. We are excited to host two symposia: MEMOCODE (International Symposium on Formal Methods and Models for System Design) and NOCS (International Symposium on Networks on Chip). We are also excited to host three workshops: CODAI (Workshop on Compilers, Deployment, and Tooling for Edge AI), DOT-PIM (Workshop on Agile Design and Optimization Tools for Processing-In-Memory), and RSP (Workshop on Rapid System Prototyping). The tutorials on Sunday precede the conferences and are an excellent opportunity to get in-depth knowledge in new trends and hot topics. There are four half-day and two full-day tutorials, covering a wide scope of topics, including high-level synthesis, model-checking, runtime monitoring and management, and hw/sw codesign. Two of these tutorials are sponsored by industry, AMD and Siemens. On Thursday and Friday the week before (September 14th and 15th), thirteen education classes will take place, given prominent experts in embedded systems, and available virtually. These are excellent opportunities for students and young researchers to improving their knowledge in these topics. We are grateful to our ACM (SIGBED, SIGDA, SIGMICRO) and IEEE (CEDA and CASS) sponsors as well as the following industry sponsors: AMD, NXP, Synopsys, Huawei, Bosch, and Siemens. The organization of ESWEEK was only possible with the continuous support and help from many volunteers: The program chairs with their program committee members, the organizers of the special day, the workshops, tutorials, and symposia, all members of the organization committee, and, last but not least, the local arrangement team. After three years of virtual conference, we are looking forward to meeting you in person at ESWEEK 2023 in Hamburg! ### **ESWEEK 2023 THANK YOU TO OUR SPONSORS** ### **GOLD** #### **BRONZE** #### **TUTORIAL** ## **SIEMENS** #### SPONSORING SOCIETIES | Thursday, September 14 | | Education Classes | | | |------------------------|--|--|---|--| | | Virtual | Virtual | Virtual | Virtual | | 10:00-12:00 | Jian-Jia Chen TU Dortmund Data Flow from Cause to Effect in Distributed Systems: Data Age and Reaction | Preeti Ranjan Panda
IIT Delhi
3D Memory - Thermal
Challenges and System
Management | | | | 16:00-18:00 | Edward Lee UC, Berkeley Deterministic Concurrency and the Lingua Franca Coordination Language | Yiran Chen Duke Efficient and Robust Edge Al: Software, Hardware, and the Co-design | Umit Ogras Wisconsin A Novel Runtime Environment for Accelerator-Rich Heterogeneous Architectures | Aviral Shrivastava Arizona State Basics of Machine Learning Accelerator Design | | Frida | ay, September 15 | | Education Classes | 5 | |-------------|---|---|---|---| | | Virtual | Virtual | Virtual | Virtual | | 10:00-12:00 | Tulika Mitra National University of Singapore Coarse-Grained Reconfigurable Array (CGRA): Architectures and Compilers | Soonhoi Ha Seoul National University Design Methodology for Low Power Computer Vision Systems | Fabrizio Ferrandi Politecnico di Milano Antonino Tumeo PNNL High-Level Synthesis of Complex Parallel Specifications | | | 16:00-18:00 | Jan Rabaey UC, Berkeley Marian Verhelst KU Leuven Bringing ML to the Extreme Edge | Sudeep Pasricha Colorado State Optical Computing for Al Acceleration | Éricles Sousa and Felipe Augusto da Silva Cadence The Five Must-have Features of Automotive SoC Architectures | Diana Goehringer TU Dresden Self-Adaptive Domain- Specific Computer Architectures | | Sund | ay, September | · 17 | Tutorials and | Diversity Eve | ents | |---------------|--|---|--|--|--| | | A0.18 | A0.14 | A1.19 | A0.19 | A0.13 | | 09:00 - 10:30 | Tutorial 1:
Introduction to the
AMD Versal ACAP
Adaptable Intelligent
Engine and to its
Programming Model
Mario Ruiz, Cathal
McCabe, AMD | Tutorial 2: Designing
an Edge Inferencing
Accelerator using
High-Level Synthesis
Petri Solanti, Russell
Klein, Siemens | Tutorial 3: How to Use Model Checking to Analyze Circuits at the Transistor Level Michael Raitza, Steffen Märcker, TU Dresden | Tutorial 5: MARS: A framework for runtime monitoring, modeling, and management of realtime systems Bryan Donyanavard, Biswadip Maity, Tiago Mück, UC Irvine, Arm and San Diego Univ. | | | 10:30 - 11:00 | | | Coffee Break | | | | 11:00 - 12:30 | Tutorial 1:
Introduction to the
AMD Versal ACAP
Adaptable Intelligent
Engine and to
its Programming
Model
Mario Ruiz, Cathal
McCabe, AMD | Tutorial 2: Designing
an Edge Inferencing
Accelerator using
High-Level Synthesis
Petri Solanti, Russell
Klein, Siemens | Tutorial 3: How to Use Model Checking to Analyze Circuits at the Transistor Level Michael Raitza, Steffen Märcker, TU Dresden | Tutorial 5: MARS: A framework for runtime monitoring, modeling, and management of realtime systems Bryan Donyanavard, Biswadip Maity, Tiago Mück, UC Irvine, Arm and San Diego Univ. | | | 12:30 - 13:30 | | | Lunch Break | 3000 | | | 13:30 - 15:00 | Tutorial 1:
Introduction to the
AMD Versal ACAP
Adaptable Intelligent
Engine and to its
Programming Model
Mario Ruiz, Cathal
McCabe, AMD | Tutorial 2: Designing
an Edge Inferencing
Accelerator using
High-Level Synthesis
Petri Solanti, Russell
Klein, Siemens | Tutorial 4: Neural
Network and
Autonomous Cyber-
Physical Systems
Formal Verification
for Trustworthy
Al and Safe
Autonomy
Hoang-Dung Tran,
Diego Manzanas
Lopez, Taylor T.
Johnson, Vanderbilt
University | Tutorial 6: HW/
SW Codesign for
Brain-Inspired
Hyperdimensional In-
Memory Computing
Paul R. Genssler,
Simon Thomann,
Hussam Amrouch, TU
Munich | Diversity, Equity
and Inclusion in
Embedded Systems
Research
An overview of the
EUGAIN COST Action:
A European Network
for Gender Balance
in Informatics
(13h30-14h)
Panel I (14h-15h):
Career perspectives in
academia vs. industry | | 15:00 - 15:30 | | | Coffee Break | | | | 15:30 - 17:00 | Tutorial 1:
Introduction to the
AMD Versal ACAP
Adaptable Intelligent
Engine and to its
Programming Model
Mario Ruiz, Cathal
McCabe, AMD | Tutorial 2: Designing
an Edge Inferencing
Accelerator using
High-Level Synthesis
Petri Solanti, Russell
Klein, Siemens | Tutorial 4: Neural
Network and
Autonomous Cyber-
Physical Systems
Formal Verification
for Trustworthy Al
and Safe Autonomy
Hoang-Dung Tran,
Diego Manzanas
Lopez, Taylor T.
Johnson, Vanderbilt
University | Tutorial 6: HW/
SW Codesign for
Brain-Inspired
Hyperdimensional
In-Memory
Computing
Paul R. Genssler,
Simon Thomann,
Hussam Amrouch, TU
Munich | Diversity, Equity and Inclusion in Embedded Systems Research Overview of the EUGAIN COST action (13h30-14h): Rukiye Altin Panel I (14h-15h): Diversity initiatives – are we on the right path? Panel II (15h30-16h30): Carreer perspectives in academia vs. industry Mentoring session (16h30-17h) | | 18:00 - 19:30 | | Reception in the E | SWEEK Lunch & Coffee | Area in Building A | | | Mond | Monday, September 18 | | | | | |---------------|--|--|--|---|--| | 8:30 - 9:00 | | Opening Session | on (Audimax 1) | | | | 9:00 - 10:00 | Enabling the Era | KEYNOTE 1
a of Immersive Computing: A R
Prof. Sarita A | (Audimax 1)
ich Agenda for Embedded Sys
Adve (UIUC) | tems Research | | | 10:00 - 10:30 | | Coffee | | | | | | A0.13 | H0.01+H0.02 | H0.16 | H0.03 | | | 10:30 - 12:00 | CASES 1: Co-Design for ML Accelerators * | CODES 1: In-Memory Computing meets EdgeAl * | EMSOFT 1: Formal CPS design * | Image/AI and ESSC competitions | | | 10:30-10:55 | Let Coarse-Grained Resources Be Shared: Mapping Entire Neural Networks on FPGAs Best paper candidate. | Overflow-free compute
memories for edge Al
acceleration
Best paper candidate. | Towards Building Verifiable
CPS using Lingua Franca. | Segmentation Track: Low-Power
Computer Vision Challenge
(10:30 - 10:38) ENOT
(10:38 - 10:46) AidgetRock
(10:46 - 10:54) ModelTC | | | 10:56-11:21 | MaGNAS: A Mapping-Aware
Graph Neural Architectural
Search Framework for
Heterogeneous MPSoC
Deployment | CRIMP: Compact & Reliable DNNs Inference for In-Memory Processing via Crossbar-Aligned Compression and Non- ideality Adaptation | Equation-Directed Axiomatization of Lustre Semantics to Enable Optimized Code Validation Best paper candidate. | Classification Track: Fair
and Intelligent Embedded
System Challenge
(10:54 - 11:02) Intelligent
and Robotic Systems
(11:02 - 11:10) Sustainable
Computing Laboratory
(11:10 - 11:18) Rutgers Efficient Al | | | 11:22-11:47 | GHOST: A Graph Neural
Network Accelerator using
Silicon Photonics | SpinBayes: Algorithm-
Hardware Co-Design for
Uncertainty Estimation
Using Bayesian In-Memory
Approximation on Spintronic-
Based Architectures | Verified Compilation of
Synchronous Dataflow with
State Machines
Best paper candidate. | ESSC Competition Track 1:
(11:20 - 11:28) gem5-NVDLA:
A Simulation Framework for
Compiling, Scheduling and
Architecture Exploration on Al
System-on-Chips | | | 11:48-11:53 | WiP: Error-Compensation-
Based Energy-Efficient MAC
Unit for CNNs | LB: Differentiable Slimming
for Memory-Efficient
Transformers | WiP: Searching Optimal Compiler Optimization Passes Sequence for Reducing Runtime Memory Profile using Ensemble Reinforcement Learning | (11:28 - 11:36) ESP: an Open-Source Platform for the Design and Programming of Heterogeneous SoCs (11:36 - 11:44) ARM-CO-UP: ARM Co-Operative Utilization | | | 11:54-11:59 | WiP: QRCNN: Scalable CNNs | | WiP: Mixing computation and interaction on FPGA | of Processors (11:44 - 11:52) ZoneTrace: A Zone Monitoring Tool for F2FS on ZNS SSDs (11:52 - 12:00) AutoDiCE Toolkit: Fully Automated Distributed CNN Inference at the Edge | | | 12:00 - 12:30 | | Poster S | Session | | | | 12:30 - 13:30 | | Lunch | Break | | | | 13:30 - 15:00 | CASES 2: Edge
Computing | CODES 2: Advanced
Trends in Efficient
Inference * | EMSOFT 2: Mobile and resource-constrained systems * | ESSC and SRC competitions | | | | A0.13 | H0.01+H0.02 | H0.16 | H0.03 | |---------------|--|--|--|---| | 13:30-13:55 | Energy-efficient Personalized
Federated Search with Graph
for Edge Computing | Florets for Chiplets: Data Flow-
aware High-Performance and
Energy-efficient Network-on-
Interposer for CNN Inference
Tasks
Best paper candidate. | DaCapo: An On-Device
Learning Scheme for
Memory-Constrained
Embedded Systems | ESSC Competition Track 2
(13:30 - 13:38) Fault Attac
Exploitability Detection in
Block Cipher Softwares
(13:38 - 13:46) HyboGen:
A compiler for innovative | | 13:56-14:21 | ViT4Mal: Lightweight Vision
Transformer for Malware
Detection on Edge Devices | Keep in Balance: Runtime-
reconfigurable Intermittent
Deep Inference
Best paper candidate. | iAware: Interaction Aware Task Scheduling for Reducing Resource Contention in Mobile Systems | interleaved execution and
compilation scenarios
(13:46 - 13:54) CPSim:
Simulation and Security Toolbo | | 14:22-14:47 | CIM: A Novel Clustering-
based Energy-Efficient
Data Imputation Method for
Human Activity Recognition | STADIA: Photonic Stochastic
Gradient Descent for Neural
Network Accelerators | Rectifying Skewed Kernel
Page Reclamation in Mobile
Devices for Improving User-
Perceivable Latency
Best paper candidate | for Cyber-Physical Systems (13:54 - 14:02) CHARM: Composing Heterogeneous AcceleRators for End-to-en Deep Learning Inference of Versal ACAP Architecture | | 14:48-14:53 | WiP: Towards Evaluating
CNNs Against Integrity
Attacks on Multi-tenant
Computation | LB: DynaFuse: Dynamic
Fusion for Resource Efficient
Multi-modal Machine
Learning Inference | LB: Efficient Partial Weight Update Techniques for Lightweight On-Device Learning on Tiny Flash- Embedded MCUs | | | 14:54-14:59 | WiP: Automatic DNN Deployment on Heterogeneous Platforms: the GAP9 Case Study | | WiP: CLERR: A High-performance
Cross-layer Method for
Eliminating Rendering
Redundancy in Android | | | 15:00 - 15:30 | | Poster Session | & Coffee Break | | | 15:30 - 17:00 | SS 1: Non-Volatile
Memories: Challenges and
Opportunities for Embedded
System Architectures with
Focus on Machine Learning
Applications | CODES 3: Emerging
Embedded Applications
- Sustainability, Safety
and Learning | EMSOFT 3: Networking | SRC: ACM
Student Research
Competition | | 15:30-15:55 | Embedded Systems with
Nonvolatile Main Memories
- Programming for
persistence and memory
access time trade-offs | A Self-Sustained CPS
Design for Reliable Wildfire
Monitoring | CrossTalk: Making Low-
Latency Fault Tolerance
Cheap by Exploiting
Redundant Networks | | | 15:56-16:21 | Architecture to compiler co-optimization for computation in resistive non-volatile memories | BASS: Safe Deep Tissue
Optical Sensing for Wearable
Embedded Systems | Improving worst-case TSN communication times of large sensor data samples by exploiting synchronization | | | 16:22-16:47 | Memory-Centric Machine
Learning | FedHIL: Heterogeneity Resilient
Federated Learning for
Robust Indoor Localization
with Mobile Devices | B-AWARE: Blockage Aware
RSU Scheduling for 5G
Enabled Autonomous
Vehicles | | | 16:48-16:53 | Prospects of Memory-
Centric Computing on Flash
Memories | WiP: Efficient Gait Trajectory
Prediction Method Based
on Soft Constraint Weighted
Template Matching | WiP: Efficient TSN network
interface handling in a mixed
criticality system | | | 16:54-16:59 | | WiP: NAPMAE: Generalized Data-Efficient Neural Architecture Predictor with | WiP: Flexible bus arbitration in mixed criticality systems | | | Tueso | Tuesday, September 19 | | | | |---------------|--|---|--|--| | 8:30 - 9:00 | | Test of Time Award | Ceremony (Audimax 1) | | | 9:00 - 10:00 | | Scaling Quar | 2 (Audimax 1) ntum Computing e Riel (IBM) | | | 10:00 -10:30 | | Coffe | ee Break | | | | A0.13 | H0.01+H0.02 | H0.16 | H Audimax 1 | | 10:30 - 12:00 | CASES 3: Embedded
Systems Security* | CODES 4: Efficient
Memory Design and
Management | EMSOFT 4: Real-
Time and distributed
systems | Special Day SS1: Green
IoT and Green ICT for
the Green Transition:
Challenges,
Opportunities, Recent
Research | | 10:30-10:55 | Protection Window Based
Security-Aware Scheduling
against Schedule-Based
Attacks
Best paper candidate. | WARM-tree: Making
Quadtrees Write-efficient
and Space-economic on
Persistent Memories | Methods to Realize
Preemption in Phased
Execution Models | (10:30-10.53) Policy implications for the energy transition: Challenges and opportunities from a system perspective | | 10:56-11:21 | Predictable GPU Wavefront
Splitting for Safety-Critical
Systems | IOSR: Improving I/O
Efficiency for Memory
Swapping on Mobile
Devices Via Scheduling
and Reshaping | Consistency vs. Availability
in Distributed Cyber-
Physical Systems | (10.53-11:15) Applying Green IoT digitalization for the Green Transition: Research challenges and opportunities | | 11:22-11:47 | PReFeR: Physically Related
Function based Remote
Attestation Protocol | CABARRE: Request
Response Arbitration
for Shared Cache
Management | Probabilistic Reaction Time
Analysis | (11:15-11:37) Digitalization in action: Use cases and lessons learned | | 11:48-11:53 | LB: LOCoCAT: Low-
Overhead Classification of
CAN bus Attack Types | LB: NvMISC: Towards an
FPGA-based Emulation
Platform for RISC-V and
Non-volatile Memories | LB: External Timed I/O
Semantics Preserving
Utilization Optimization for
LET-based Effect Chain | (11:37-12:00) Green ICT for
energy-efficient data centers,
edge AI and IoT systems | | 11:54-11:59 | LB: Flipping Bits Like a Pro:
Precise Rowhammering on
Embedded Devices | LB: CNN Workloads
Characterization and
Integrated CPU-GPU DVFS
Governors on Embedded
Systems | | | | 12:00 - 12:30 | | Poste | r Session | | #### **TTA Awards** Predictable Programming on a Precision Timed Architecture (CASES 2008) by Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A. Lee. Predator: A Predictable SDRAM Memory Controller (CODES+ISSS 2007) by Benny Akesson, Kees Goossens, and Markus Ringhofer. Scheduling Multiple Independent Hard-Real-Time Jobs on a Heterogeneous Multiprocessor (EMSOFT 2007) by Orlando Moreira, Frederico Valente, and Marco Bekooij. | Tuesday, September 19 (continued) | | | | | |-----------------------------------|--|--|--|--| | | A0.13 | H0.01+H0.02 | H0.16 | H Audimax 1 | | 12:30 - 13:30 | | Lunc | h Break | | | 13:30 - 15:00 | CASES 4: Efficient
Memory Systems * | CODES 5: Security and
Reliability | EMSOFT 5:
Optimization and
design of embedded
systems | Special Day SS2:
Machine Learning for
Embedded System
Design | | 13:30-13:55 | ZPP: A Dynamic Technique
to Eliminate Cache Pollution
in NoC based MPSoCs
Best paper candidate. | Thermal Management for
3D-Stacked Systems via
Unified Core-Memory Power
Regulation. | Sound Mixed Fixed-Point
Quantization of Neural
Networks | (13:30-14:00) ML for System-
Level Modeling and Design
Speaker: Andreas Gerstlauer,
UT Austin | | 13:56-14:21 | EMS-I: An Efficient Memory System Design with Specialized Caching Mechanism for Recommendation System Inference | ANV-PUF: Machine-
Learning-Resilient NVM-
Based Arbiter PUF | A Constructive State-based
Semantics and Interpreter
for a Synchronous Data-
flow Language with State
machines | (14:00-14:30) ML for High-
Level Synthesis: Opportunities
and Lessons | | 14:22-14:47 | Proactive Stripe Reconstruction to Improve Cache Use Efficiency of SSD-Based RAID Systems | HEPHAESTUS: Codesigning
and Automating 3D
Image Registration
on Reconfigurable
Architectures | Optimal Synthesis of Robust
IDK Classifier Cascades | (14:30-15:00) Synthesis Prediction: Use Deep Learning to Expedite the Hardware Architecture and Design Process | | 14:48-14:53 | LB: Swift-CNN: Leveraging
PCM Memory's Fast Write
Mode to Accelerate CNNs | LB: Effects of Runtime
Reconfiguration on PUFs
Implemented as FPGA-
based Accelerators | LB: Optimized Local Path
Planner implementation for
GPU-accelerated embedded
systems | | | 14:54-14:59 | LB: No-Multiplication Deterministic Hyperdimensional Encoding for Resource-Constrained Devices | LB: Hardware-Software
Co-optimization of Long-
Latency Stochastic
Computing | WiP: Unishyper, A Reliable
Rust-based Unikernel for
Embedded Scenarios | | | 15:00 - 15:30 | | Poster Session | n & Coffee Break | | | 15:30 - 17:00 | Industry Panel (H Audimax 1) The Global Semiconductor Renaissance and Embedded Computing: An Industry Perspective Panelists: Sankar Basu (US NSF), Tobias Helbig (NXP), Heike Riel (IBM), Jin Yang (Intel), Marilyn Wolf (moderator, University of Nebraska Lincoln) | | | | | 17:00 - 18:00 | | ESSC Demo | Session (H0.03) | | | 19:30 - 23:00 | | Social Event (Dinner cruis | se on a "Southern Style" ship) | | | Wednesday, September 20 | | | | |-------------------------|---|---|--| | 8:30 - 9:00 | | Best Paper Award Ceremony | | | 9:00 - 10:00 | KEYNOTE 3: The que | est for resilient embedded systems in the
Prof. Lothar Thiele (ETH) | era of machine learning | | 10:00 - 10:30 | | Coffee Break | | | | A0.13 | H0.01+H0.02 | H0.16 | | 10:30 - 12:00 | CASES 5: Approximate
Computing | CODES 6: Data Management for Magnetic Devices | EMSOFT 6: Learning from black-box components | | 10:30-10:55 | AxOTreeS: A Tree Search Approach
to Synthesizing FPGA-based
Approximate Operators | LaDy: Enabling Locality-aware
Deduplication Technology on
Shingled Magnetic Recording Drives | Mining Hyperproperties using
Temporal Logics | | 10:56-11:21 | VADF: Versatile Approximate Data Formats for Energy-Efficient Computing | FSIMR: File-system-aware Data
Management for Interlaced Magnetic
Recoding | Kryptonite : Worst-Case Program
Interference Estimation on Multi-Core
Embedded Systems | | 11:22-11:47 | Modular DFR: Digital Delayed
Feedback Reservoir Model for
Enhancing Design Flexibility | LB (11:22-11:27): Should We Even Optimize for Execution Energy? Rethinking Mapping for MAGIC Design Style | Probabilistic Black-Box Checking via
Active MDP Learning | | 11:48-11:53 | LB: Vector-Based Dedicated
Processor Architecture for Efficient
Tracking in VSLAM Systems | WiP: A Universal Instrumentation
Platform for Non-Volatile Memories | WiP: Micro-Accelerator-in-the-Loop
Framework for MCU Integrated
Accelerator Peripheral Fast
Prototyping | | 11:54-11:59 | LB: An Approximate Parallel
Annealing Ising Machine for Solving
Traveling Salesman Problems | WiP: A Generic Non-Intrusive
Parallelization Approach for SystemC
TLM-2.0-based Virtual Platforms | | | 12:00 - 12:30 | | Poster Session | | | 12:30 - 13:30 | | Lunch Break | | | VAI or all so | andre Contomber 20 c | | | |---------------|--|--|---| | wean | esday, September 20 (d | | | | | A0.13 | H0.01+H0.02 | H0.16 | | 13:30 - 15:00 | CASES 6: Design,
Management, and Security of
SoCs | SS 2: Mitigating side-channel attacks: A multilayer bottom-
up approach | EMSOFT 7: Design of control systems | | 13:30-13:55 | SpikeHard: Efficiency-Driven
Neuromorphic Hardware for
Heterogeneous Systems-on-Chip | (13:30-13:53) Designing SCA-
resilient Circuits with Emerging
Reconfigurable Nanotechnologies | Stochastic Analysis of Control
Systems Subject to Communication
and Computation Faults | | 13:56-14:21 | DTRL: Decision Tree-based Multi-
Objective Reinforcement Learning for
Runtime Task Scheduling in Domain-
Specific System-on-Chips | (13:53-14:15) Tools for Automated
Generation of SCA-Protected Circuits
Presenters: Amir Moradi, Ruhr
University Bochum, Germany | Formal Synthesis of Neural Barrier
Certificates for Continuous Systems
via Counterexample Guided Learning | | 14:22-14:47 | ObNoCs: Protecting Network-on-Chip
Fabrics Against Reverse-Engineering
Attacks | (14:15-14:37) Obfuscation against
Side-Channel Attacks in Edge
Environments
Presenters: Chongzhou Fang, Ning
Miao, Han Wang, Sai Manoj, Houman
Homayoun, UC Davis | Neural Abstraction-Based Controller
Synthesis and Deployment | | 14:48-14:53 | LB: High Flexibility Designs of
Quantized Runtime Reconfigurable
Multi-precision Multipliers | (14:37-15:00) Industry Perspectives on
Side-Channel Attacks and Defenses
Presenters: Benjamin Hettwer, Robert
Bosch Corporate Research | WiP: Integrating WebAssembly into
Service Oriented Architectures for
Edge Systems | | 14:54-14:59 | LB: FPGA Implementation of Modified
SNOW 3G Stream Ciphers using Fast
and Resource Efficient Substitution Box | | | | 15:00 - 15:30 | | Poster Session & Coffee Break | | | 15:30 - 17:00 | CASES 7: Co-design for ML accelerators | | Education Panel (H0.16) | | 15:30-15:55 | Computationally Efficient DNN
Mapping Search Heuristic using Deep
Reinforcement Learning | | Computer Engineering Education, Embedded Computing, and the Semiconductor Renaissance | | 15:56-16:21 | DASS: Differentiable Architecture
Search For Sparse neural networks | | Panelists: Robert Dick (University of Michigan), Patrick Haspel (Synopsys), | | 16:22-16:47 | BitSET: Bit-Serial Early Termination
for Computation Reduction in
Convolutional Neural Networks | | Jan Madsen (moderator, Danish
Technical University), Muhammad
Shafique (NYU), Marilyn Wolf | | 16:48-16:53 | | | (University of Nebraska Lincoln), | | 16:54-16:59 | | | Wang Yu (Tsinghua University) | | | H0.01+H0.02 | H0.16 | H0.03 | H0.07 | H0.08 | |---------------|---|---|--|---|--| | | MEMOCODE | NOCS | Workshop DOT- | Workshop CODAI | Workshop RSP | | | MEMOCODE | NOCS | PIM | (11:00 - 19:00) | Workshop KSF | | 9:00 - 10:00 | Keynote 1: Edward A.
Lee (U.C. Berkeley) | Keynote 1: Axel
Jantsch (TU Wien) | Keynote: Memory-
Centric Computing
(9:45-10:15) Full-stack
Deployment and
Design tools for RRAM-
based Compute-in-
memory System | (10:35 - 11:15) Keynote: Next- generation Compilers for Emerging Systems | Keynote: Digital
Hardware
Acceleration for
Neural Networks:
Implementation
Considerations | | 10:00 -10:30 | | | Coffee Break | | | | 10:30-12:30 | Technical Session 1:
Machine Learning | Technical Session 1:
High-Performance
and Dynamic NoC
Architectures | | Session 1:
Deployment and
Optimization
Techniques | | | 10:30 - 11:00 | Safe Integration
of Learning in
SystemC using Timed
Contracts and Model
Checking | FlooNoC: A Multi-
Tbps Wide NoC for
Heterogeneous AXI4
Traffic | A Neuro-Vector-
Symbolic Architecture
for Data- and
Compute-Efficient
Continual Learning,
Abstract Reasoning,
and Combinatorial
Inference | | | | 11:00-11:30 | Hybrid Genetic Reinforcement Learning for Generating Run- Time Requirement Enforcers | Dynamically Reconfigurable Network Protocol for Shape-Changeable Computer System | Opportunities and
Challenges for
Process-In-Memory
(PIM) Technology in
ICT Products | (11:15 - 11:40) Scaling Up Quantization- Aware Neural Architecture Search for Efficient Deep Learning on the Edge | Fast and Accurate
Virtual Prototyping
of an NPU with
Analytical Memory
Modeling | | 11:30-12:00 | Robust Testing for
Cyber-Physical
Systems using
Reinforcement
Learning | PiN: Processing in
Network-on-Chip
(Tutotial Paper) | EDA Toolchain
for Processing-
in-Memory CNN
Accelerators | (11:40 - 12:05) Tiny
Machine Learning:
Enabling Intelligence
on Constrained
Devices | The Impact of
Heterogeneous
Logic on Adders and
Multipliers in VTR | | 12:00-12:30 | Explaining Unsolvability of Planning Problems in Hybrid Systems with Model Reconciliation | | | (12:05 - 12:30)
Hardware-
Aware Network
Compression: From
Data to Silicon | Polynomial Formal
Verification Exploiting
Constant Cutwidth | | 12:30 - 13:30 | | | Lunch Break | | | | 13:30 - 15:00 | Technical Session
2: Verification
and Synthesis | 2: NoCs for Al
Acceleration
and Interposer
Systems | | Session 2:
Compilation
Frameworks and
Techniques | | | 13:30-14:00 | Allocation and
Scheduling of
Dataflow Graphs on
Hybrid Dataflow/
von Neumann
Architectures | A NoC-Based Spatial
DNN Inference
Accelerator with
Memory-Friendly
Dataflow | (13:30-14:10) HISIM:
Heterogeneous
Integration Simulator
with 2.5D/3D
Interconnect
Modeling | (13:30 - 13:55) Accelerating Edge Al with Morpher: An Integrated Design, Compilation and Simulation Framework for CGRAs | (13:30-13:50) SerIOS
Enhancing Hardware
Security in Integrated
Optoelectronic
Systems | continues on next page | | sday, September 21 (continued) Symposia and Workshops | | | | hops | |---------------|---|--|--|---|---| | | H0.01+H0.02 | H0.16 | H0.03 | H0.07 | H0.08 | | | MEMOCODE | NOCS | Workshop
DOT-PIM | Workshop CODAI
(11:00 - 19:00) | Workshop RSP | | 14:00-14:30 | Harnessing Multiple
BMC Engines
together for Efficient
Formal Verification | ELEMENT: Energy- efficient Multi-NoP Architecture for IMC-based 2.5D Accelerator for DNN Training | (14:10-14:40) Digital
Computing-In-
Memory Architecture
and Design
Automation | (13:55 - 14:20) Towards Rapid Exploration of Heterogeneous TinyML Systems using Virtual Platforms and TVM's UMA (14:20 - 14:45) ART: An Actor transition systems RunTime for enabling efficient partitioning of neural network graphs | (13:50-14:10) Extending Memory Compatibility with Yosys Front-End in VTR Flow (14:10-14:30) MRPHS: A Verilog RTL to C++ Model Compiler Using Intermediate Representations For Object-oriented, Model-driven Prototyping | | 14:30-15:00 | Polynomial Formal
Verification of KFDD
Circuits | SoCProbe:
Compositional Post-
Silicon Validation of
Heterogeneous NoC-
Based SoCs | (14:40-15:10) Robust
and Efficient
Analog In-Memory-
Computing Platforms
for Neural Networks | (14:45 - 15:10) SYCL
- A Modern C++
Programming Model
for Accelerators | Integrating Quick Resource Estimators in Hardware Construction Framework for Design Space Exploration | | 15:00 - 15:30 | | | Coffee Break | | | | 15:30 - 17:00 | Technical Session 3: Specification and Verification | Technical Session 3: Routing and Deadlock Recovery in Interconnection Networks | | Session 3:
Applications | | | 15:30-16:00 | QTWTL: Quality Aware Time Window Temporal Logic for Performance Monitoring | A Reinforcement
Learning Framework
with Region-
Awareness and Shared
Path Experience for
Efficient Routing in
Networks-on-Chip | (15:25-15:55) Fast
and Reconfigurable
Sort-In-Memory
System Enabled by
Memristors
(15:55-16:20)
Benchmarking
Framework for Non-
volatile Capacitive
Compute-in-Memory | (15:40 - 16:05) Temporal Patience: Efficient Adaptive Deep Learning for Embedded Radar Data Processing | (15:30-15:50) RaDaML: A Modeling Language for DO-178C High- Level Requirements in Airspace Systems (15:50-16:10) Security assessment of a commercial router using physical access: a case study | | 16:00-16:30 | Model Checking
Time Window
Temporal Logic for
Hyperproperties | SPOCK: Reverse
Packet Traversal for
Deadlock Recovery | (16:20-16:45) Towards Efficient Processing in Memory AI Systems with Cross-layer Optimization | (16:05 - 16:30) Pros and Cons of Executable Neural Networks for Deeply Embedded Systems (16:30 - 16:55) Software and Hardware for Sparse ML | (16:10-16:30) Fast
Compiler Optimization
Flag Selection
(16:30-17:00) HDLGer
and ChatGPT Case
Study: RISC-V
Processor VHDL
and Verilog Model,
Testbench and EDA | | | | | | <u> </u> | Project Capture | | Frida | Friday, September 22 | | | | |---------------|--|---|--|--| | | H0.01 H0.02 | H0.16 | | | | | MEMOCODE | NOCS | | | | 9:00 - 10:00 | Keynote 2: Rolf Drechsler (Univ. Bremen) | Keynote 2: Diana Göhringer (TU Dresden) | | | | 10:00 - 10:30 | Coffee | Break | | | | 10:30-12:30 | Technical Session 4: Hardware | Technical Session 4: NoC Modeling, Optimization, and Verification | | | | 10:30-11:00 | Symbolic Elaboration: Checking Generator Properties in
Dynamic Hardware Description Languages | Fast Analysis using Finite Queuing Model for Multi-layer NoCs | | | | 11:00-11:30 | Timestamp Peripherals for Precise Real-Time
Programming | edAttack: Hardware Trojan Attack on On-Chip Packet
Compression | | | | 11:30-12:00 | Formally Verifying the Stall Invariant Property of Latency-
Insensitive RTL Modules | Analytical Model for Performance Evaluation of Token-
Passing Based WiNoCs | | | | 12:00-12:30 | Formal Verification of Security Properties on RISC-V Processors | | | | | 12:30 - 13:30 | Lunch | Break | | | | 13:30 - 15:00 | Technical Session 5: Models | Special Session on New Architectures and Techniques for Edge Intelligence | | | | 13:30-14:00 | Scalable Actor Networks with CAL | On Hardware-Aware Design and Optimization of Edge Intelligence | | | | 14:00-14:30 | Constraint-Behavior Contracts: A Formalism for Specifying Physical Systems | Hardware/Software Co-Exploration for Hyperdimensional Computing on Network-on-Chip Architecture | | | | 14:30-15:00 | Finding a Basis for Non-Sequential Endochronous
Functions in Dataflow Process Networks | Automated Optical Accelerator Search: Expediting Green and Ubiquitous DNN-Powered Intelligence | | | | 15:00 - 15:30 | Coffee Break | | | | | 15:30 - 17:00 | Closing Session | Closing Session and Panel | | | | 15:30-16:00 | MEMOCODE 2023 Best-Paper Award | NOCS 2023 Best-Paper Award | | | | 16:00-16:30 | Review: MEMOCODE 2023 /
Outlook: MEMOCODE 2024 | Panel and Closing Remarks | | | ### **ESWEEK 2023 VENUE AND AREA MAPS** ### **H** Ground Floor ### **H First Floor** ### **ESWEEK 2023 VENUE AND AREA MAPS** ### **A Ground Floor** ### A First Floor ## **ESWEEK 2023 VENUE AND AREA MAPS** ### Directions to the Conference Hamburg Points of Interest ### **ESWEEK 2023 CONFERENCE INFORMATION** WLAN Name: ESWEEK23 Passwort: 9oSpRbWs WPA2/AES Verwenden Sie **DHCP** und keine statische IP-Adresse. Weitere Informationen finden Sie unter https://www.tuhh.de/tuhhvn Use **DHCP** and not a static IP address. For more information, see https://www.tuhh.de/tuhhvn ## **ESWEEK 2023 CONFERENCE INFORMATION** ### **ESWEEK Twitter** ### **ESWEEK Website**