Tutorial 1: Creating Domain-Specific Modeling Languages - Hands on

* 9:00am - 1:00pm, Sep 20

* Tutorials

A horrible lie exists in our industry today: it says that defining a graphical domain-specific languages (DSLs) is difficult and time-consuming. In this tutorial, we will lay bare this fallacy and demonstrate how simple and quick it is to create domain-specific languages and their generators. Using a hands-on approach you will define several modeling languages and generators within a few hours, learning principles and best practices proven in industrial experience.

The tutorial teaches practical, repeatable steps to invent and implement DSL. The language definition process reveals the characteristics of DSLs that enable generating working code from models:

- DSL is based on the concepts of problem domain rather than code
- Scope of the language narrowed down to a particular domain
- Language minimizes the effort needed to create, update and check the models

Experience on using at least one modeling tool is required. Experience on language creation is not required.

Participation: This tutorial is an interactive hands-on tutorial where participants will define several modeling languages. To keep the focus on language design rather than low-level implementation details, we will use a high-level language workbench. Participants who sign up in advance will receive a three-month license for MetaEdit+ Workbench, which they can install beforehand.

Embedded Systems Week uses Zoom for video conferencing, and we can use Zoom's breakout rooms for one-on-one help. Be prepared to use your microphone and show your screen for detailed questions on your language definition.

Speakers

Juha-Pekka Tolvanen
Steven Kelly

Tutorial 2: Software-Defined Hardware - Digital Design with Chisel

* 9:00am - 1:00pm, Sep 20

* Tutorials

To develop future more complex digital circuits in less time we need a better hardware description language than VHDL or Verilog. Chisel is a hardware construction language intended to speed up the development of digital hardware and hardware generators.

Chisel is a hardware construction language implemented as a domain-specific language in Scala. Therefore, the full power of a modern programming language is available to describe hardware and, more important, hardware generators. Chisel has been developed at UC Berkeley and successfully used for several tape outs of RISC-V by UC Berkeley students and a chip for a tensor processing unit by Google. Here at the Technical University of Denmark we use Chisel in the T-CREST project and in teaching digital electronics and advanced computer architecture.

In this tutorial we will give an overview of Chisel to describe circuits, how to use the Chisel tester functionality to test and simulate digital circuits, present how to synthesize circuits for an FPGA, and present advanced functionality of Chisel for the description of circuit generators.

The aim of the course is to get a basic understanding of a modern hardware description language and be able to describe simple circuits in Chisel. This course will give a basis to explore more advanced concepts of circuit generators written in Chisel/Scala. The intended audience is hardware designers with some
background in VHDL or Verilog, but Chisel is also a good first hardware language for software programmers entering into hardware design (e.g., porting software algorithms to FPGAs for speedup).

Participation: The Chisel tutorial is an interactive tutorial that also includes discussions between participants. Therefore, please make sure that your audio and video equipment works. Everyone participating needs to be online visible. Furthermore, for the hands-on lab you need to install some SW on you PC (Java 1.8 JDK and sbt). For details see: https://github.com/schoeberl/chisel-lab/blob/master/Setup.md

Speaker
Martin Schoeberl

Tutorial 3: Out-of-Order Parallel Simulation of SystemC Models using the RISC Framework

Tutorials

The simulation of large SystemC models is slow due to the sequential nature of traditional simulators, such as the Accellera proof-of-concept reference implementation. Parallel Discrete Event Simulation (PDES) offers an order of magnitude speedup, but incurs obstacles due to the cooperative multi-threading semantics of IEEE SystemC.

This tutorial introduces and practices the Recoding Infrastructure for SystemC (RISC) framework which enables aggressive automatic parallelization of SystemC simulation by use of out-of-order PDES which can achieve two orders of magnitude speedup. RISC also features advanced thread-aware static analysis of SystemC models using a dedicated compiler and segment graph data structure that allow deep insight into the potential parallelization of design models at hand.

Participation: For hands-on participation, you will need a Linux account on a multi-core host with Docker access to download RISC (otherwise you are welcome to just watch the demos).

Speaker
Rainer Doemer

5 Subsessions

- **Introduction to Out-of-Order Parallel Discrete Event Simulation**
 Tutorials
 9:00am - 9:40am, Sep 20

- **Overcoming the Obstacles of IEEE SystemC Semantics**
 Tutorials
 9:40am - 10:20am, Sep 20

- **RISC: Recoding Infrastructure for SystemC**
 Tutorials
 10:20am - 11:15am, Sep 20

- **Hands-on Practical Training with RISC Compiler and Simulator**
 Tutorials
 11:15am - 12:15pm, Sep 20

- **Hands-on Practical Analysis of Parallel Potential of SystemC Models**
 Tutorials
 12:15pm - 1:00pm, Sep 20

11:00am

Tutorial 4: Tasking Framework: An open-source software development library for on-board software systems

Tutorials

* This tutorial is a live Q&A session with pre-recorded videos made available before the event.
Tasking Framework is a C++ software development library and an event-driven multithreading execution platform. It is developed by the Institute for Software Technology, German Aerospace Center (DLR). Tasking Framework is dedicated to improve the reusability in developing embedded software systems and to reconcile the embedded software with model-driven software development. It can be used to develop, but not dedicated for, critical as well as non-critical embedded software on single-core as well as parallel architectures. Tasking Framework gives software developers the ability to implement their applications as task graphs with arbitrary activation patterns (periodic, aperiodic and sporadic) using a set of abstract classes with virtual methods. It is compatible with the POSIX-based operating systems, mainly Linux and RTEMS. The Tasking Framework was successfully used in, for instance, the attitude orbit control system of a satellite, the experiment control system on a sounding rocket, and in a lunar navigation system.

In this tutorial, we will present the main features of Tasking Framework, how to get it, use cases, and development process.

Participation: You can download Tasking Framework from here https://github.com/DLR-SC/tasking-framework. Pre-recorded videos are posted in seven parts in the different sub-sessions listed below.

Pre-recorded videos are also available [here](https://github.com/DLR-SC/tasking-framework).

Speakers

Zain Alabedin Haj Hammadeh
Olaf Maibaum

7 Subsessions

- **Introduction to the tutorial and agenda**
 11:00am - 11:00am, Sep 20

- **Tasking Framework in a nutshell: motivation and basic features**
 11:00am - 11:00am, Sep 20

- **Tasking Framework from A to Z**
 11:00am - 11:00am, Sep 20

- **Tasking Framework in practice: Checkout + Compile**
 11:00am - 11:00am, Sep 20

- **Tasking Framework in practice: Basic Functionalities**
 11:00am - 11:00am, Sep 20

- **Tasking Framework in practice: Timing Functionalities**
 11:00am - 11:00am, Sep 20

- **Outlook on development process and invitation to contribute**
 11:00am - 11:00am, Sep 20

2:00pm

Work-in-Progress
2:00pm - 5:00pm, Sep 20

Work-in-Progress

There will be NO live Q&A for this session. **Asynchronous Q&A** via the Whova chat where authors will answer will be available throughout the whole week.

38 Subsessions

- **Work-in-Progress: Application of Simulation-Based Methods on Autonomous Vehicle Control with Deep Neural Network**
 2:00pm - 5:00pm, Sep 20
• Work-in-Progress: Integrated Performance Tuning of an IIoT Digital Twin
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: Progress-aware dynamic slack exploitation in mixed-critical systems
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: Interpretability Derived Backdoor Attacks Detection in Deep Neural Networks
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: Synchronizing Real-Time Tasks in Time-Aware Networks
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: The rclc Executor: Domain-specific deterministic scheduling mechanisms for ROS applications on microcontrollers
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: An Insight into Fault Propagation in Deep Neural Networks
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: Multiform Logical Time & Space for Specification of Automated Driving Assistance System
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: A Game Theory Approach to Heterogeneous Resource Management
 2:00pm - 5:00pm, Sep 20

• Work in Progress: Distributed Decision-making for Safe and Secure Global Resource Management via Blockchain: Work-in-Progress
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: Towards Highly Specialized, POSIX-compliant Software Stacks with Unikraft
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: Safety Analysis of Linear Discrete-time Stochastic Systems
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: A Machine Learning based Approximate Computing Approach on Data Flow Graphs
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: Efficient Multi-Class Out-of-Distribution Reasoning for Perception Based Networks
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: OpenMP Device Offloading for Embedded Heterogeneous Platforms
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: Formal Verification of GCSE in the Scheduling of High-level Synthesis
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: A New Hardware Trojan Design: Distinguishing Between Trigger Inputs and Functional Inputs Is Difficult
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: WiderFrame: An Automatic Customization Framework for Building CNN Accelerators on FPGAs
 2:00pm - 5:00pm, Sep 20

• Work-in-Progress: RePAiR: A Strategy for Reducing Peak Temperature while
Enhancing Accuracy of Approximate Real-Time Computing
© 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: An Energy-aware Spiking Neural Network Hardware Mapping based on Particle Swarm Optimization and Genetic Algorithm
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: GraphPage: RDF Graph in SSD Pages
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: Accelerating Queries of MongoDB by an FPGA-based Storage Engine
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: Layering the monitoring action for improved flexibility and overhead control
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: Attention-Based Secure Feature Extraction in Near Sensor Processing
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: Techniques for Design Analysis and Modification Based on ASAP Model
 © 2:00pm - 5:00pm, Sep 20

 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: Model Stealing Defense with Hybrid Fuzzy Models
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: Heatmap-Aware Low-Cost Design to Resist Adversarial Attacks
 © 2:00pm - 5:00pm, Sep 20

 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: Smart Migration for Reliability Enhancement of 3D TLC NAND Flash Storage Systems
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: A Lifelong Health Monitoring Framework in Processors
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: The Shift PUF: Technique for Squaring the Machine Learning Complexity of Arbiter-based PUFs
 © 2:00pm - 5:00pm, Sep 20

- Work-in-Progress: Towards Quality-Driven Approximate Software Generation for Accurate Hardware
 © 2:00pm - 5:00pm, Sep 20
9:30am

ESWEEK Opening

Opening remarks

Speakers
- Tulika Mitra
- Andreas Gerstlauer

10:00am

Keynote: Skin-Like Wireless Wearables – From Premature Babies in the NICU to Patients with COVID-19

Speaker: Professor John A. Rogers, Northwestern University

Recent global events are reshaping the geopolitical and socio-economic landscape in ways that will likely alter research priorities for at least a generation – a broad consensus is that long-term solutions to the underlying societal challenges will only occur through innovative technologies and advanced medicines, as life-saving diagnostics, digital biosensors, therapeutics and preventatives. This talk will outline work that intersects with essential unmet needs in this broader context, specifically in the form of skin-like wireless wearables for continuous monitoring of physiological status with clinical-grade precision. The focus is on foundational ideas in materials, design and manufacturing, with examples of devices designed for patient populations that range from premature babies in neonatal intensive care units to COVID-19 patients in the hospital and the home – both deployed locally within the medical complex here in Chicago and globally in clinics across lower and middle income countries in Africa and Central America.

Speaker

John Rogers

11:00am

CASES Session 1A: Memory Technologies

Moderator: Sudeep Pasricha, Colorado State University, USA

Memory has been a key component of various computing platforms starting from mobile devices to high-performance computing (HPC) systems. This session presents papers showcasing recent advances on memory technologies.

* indicates Best Paper Candidate

Pre-recorded videos are also available here.
<table>
<thead>
<tr>
<th>Subsession</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODES+ISSS Session 1B: Neural Network Acceleration</td>
<td>11:00am - 11:40am-Sep 21</td>
<td>CODES+ISSS</td>
</tr>
<tr>
<td>* Everything Leaves Footprints: Hardware Accelerated Intermittent Deep Inference</td>
<td>11:00am - 11:40am-Sep 21</td>
<td></td>
</tr>
<tr>
<td>FSA: A Fine-Grained Systolic Accelerator for Sparse CNNs</td>
<td>11:00am - 11:40am-Sep 21</td>
<td></td>
</tr>
<tr>
<td>* StereoEngine: An FPGA-based Accelerator for Real-Time High-quality Stereo Estimation with Binary Neural Network</td>
<td>11:00am - 11:40am-Sep 21</td>
<td></td>
</tr>
<tr>
<td>SuperSlash: A Unified Design Space Exploration and Model Compression Methodology for Design of Deep Learning Accelerators With Reduced Off-Chip Memory Access Volume</td>
<td>11:00am - 11:40am-Sep 21</td>
<td></td>
</tr>
<tr>
<td>WinoNN: Optimizing FPGA-based Convolutional Neural Network Accelerators Using Sparse Winograd Algorithm</td>
<td>11:00am - 11:40am-Sep 21</td>
<td></td>
</tr>
</tbody>
</table>

EMSOFT Session 1C: Real-Time Scheduling
11:00am - 11:40am-Sep 21

* indicates Best Paper Candidate
Moderator: Yuan-Hao Chang, Academia Sinica, Taiwan

Deep learning and neural networks are increasingly becoming a key component of embedded systems across numerous application domains. This session explores both the design of energy-efficient and high-performance neural network accelerators and design space exploration methods to assist in designing those accelerators.

Pre-recorded videos are also available [here](#).
Scheduling algorithms and analyses with a focus on real-time and energy. Namely, (a) a novel schedulability analyses of suspension-aware EDF on uniprocessor systems for both sporadic and periodic task sets; (b) static scheduling using Integer Linear Programming of task graphs for actor networks onto multi-core ARM big.LITTLE CPUs with discrete voltage and frequency scaling; (c) new techniques to improve the computation of the demand-bound function for analyzing the feasibility and schedulability of real-time tasks; (d) a quantitative-verification framework for precedence-aware competitive analysis with a GPU-based analysis of well-known schedulers from the literature; and (e) new algorithms for real-time dynamic task scheduling based on directed acyclic graphs taking into account energy and reliability.

Pre-recorded videos are also available [here](#).

5 Subsessions

- **Suspension-Aware Earliest-Deadline-First Scheduling Analysis**
 - 11:00am - 11:40am, Sep 21

- **Static Scheduling of Moldable Streaming Tasks with Task Fusion for Parallel Systems with DVFS**
 - 11:00am - 11:40am, Sep 21

- * **Efficient Feasibility Analysis for Graph-based Real-Time Task Systems**
 - 11:00am - 11:40am, Sep 21

- **Precedence-aware Automated Competitive Analysis of Real-time Scheduling**
 - 11:00am - 11:40am, Sep 21

- **Dynamic DAG Scheduling on Multiprocessor Systems: Reliability, Energy and Makespan**
 - 11:00am - 11:40am, Sep 21

11:45am

CASES Session 2A: Energy-efficient ML for IoT and Edge Devices

- **CASES**

 * indicates Best Paper Candidate

 Moderator: Ryan Kim, Colorado State University, USA

 Advances in Machine Learning (ML) algorithms are key for the successful deployment of IoT and edge devices. This session focuses on application of ML algorithms in resource constraint environments.

 Pre-recorded videos are also available [here](#).

5 Subsessions

- **Fusion-Catalyzed Pruning for Optimizing Deep Learning on Intelligent Edge Devices**
 - 11:45am - 12:25pm, Sep 21

- * **Efficient Scheduling of Irregular Network Structures on CNN Accelerators**
 - 11:45am - 12:25pm, Sep 21

- **FSpiNN: An Optimization Framework for Memory-Efficient and Energy-Efficient Spiking Neural Networks**
 - 11:45am - 12:25pm, Sep 21

- **Analyzing Deep Learning for Time-Series Data through Adversarial Lens in Mobile and IoT Applications**
 - 11:45am - 12:25pm, Sep 21

- **MacLeR: Machine Learning-Based Runtime Hardware Trojan Detection in Resource-Constrained IoT Edge Devices**
 - 11:45am - 12:25pm, Sep 21
CODES+ISSS Session 2B: Multicore and Approximate Architectures
□ 11:45am - 12:25pm, Sep 21

Moderator: Liang Shi, East China Normal University, China

High-performance and energy-efficient multicore architectures are widely utilized within modern embedded systems. This session presents novel methods for approximate computing, approximate communication, time-predictable memory architectures, and more accurate power estimation methods.

Pre-recorded videos are also available here.

5 Subsessions

- Learning-based Quality Management for Approximate Communication in Networks-on-Chip
 □ 11:45am - 12:25pm, Sep 21

- Aggressive Fine-Grained Power Gating of NoC Buffers
 □ 11:45am - 12:25pm, Sep 21

- Meshed Bluetree: Time-Predictable Multi-Memory Interconnect for Multi-Core Architectures
 □ 11:45am - 12:25pm, Sep 21

- Risk-5: Controlled approximations for RISC-V
 □ 11:45am - 12:25pm, Sep 21

- A Lightweight Nonlinear Methodology to Accurately Model Multi-Core Processor Power
 □ 11:45am - 12:25pm, Sep 21

EMSOFT Session 2C: Energy-Aware Applications and Techniques
□ 11:45am - 12:25pm, Sep 21

Moderator: Lothar Thiele, ETH Zürich, Switzerland

Techniques and applications with a focus on optimizing battery performance and energy use. Namely, (a) a system for reducing the state saved for tasks in an intermittent computing system; (b) an approach for planning battery-powered payload utilization in small, low-earth orbit satellites; (c) the optimization of discharge efficiency for multi-cell batteries using safety-supplemented hardware and machine learning, evaluated on a hardware prototype; (d) a scheme for maximizing drone flight time while safely using its battery based on state-of-charge information; and (e) a probabilistic energy prediction strategy with precise mixed-criticality scheduling that uses dynamic voltage and frequency scaling to minimize energy use while still guaranteeing timing correctness.

Pre-recorded videos are also available here.

5 Subsessions

- LATICS: A Low-overhead Adaptive Task-based Intermittent Computing System
 □ 11:45am - 12:25pm, Sep 21

- Managing Fleets of LEO Satellites: Non-Linear, Optimal, Efficient, Scalable, Usable, and Robust
 □ 11:45am - 12:25pm, Sep 21

- Optimizing Discharging Efficiency of Reconfigurable Battery with Deep
Reinforcement Learning
11:45am - 12:25pm, Sep 21

- Optrone: Maximizing Performance and Energy Resources of Drone Batteries
 11:45am - 12:25pm, Sep 21

- Optimizing Energy in Non-preemptive Mixed-Criticality Scheduling by Exploiting Probabilistic Information
 11:45am - 12:25pm, Sep 21

12:30pm

Meet the ESWEEK organizers and sponsoring society representatives
12:30pm - 1:00pm, Sep 21

CASES Networking
12:30pm - 1:00pm, Sep 21

CODES+ISSS Networking
12:30pm - 1:00pm, Sep 21

EMSOFT Networking
12:30pm - 1:00pm, Sep 21

Tue, Sep 22, 2020

7:30am

European Industrial Session
7:30am - 9:00am, Sep 22

Moderator: Rainer Leupers, RWTH Aachen University, Germany

This session showcases eight European technology transfer experiments funded by the Horizon 2020 innovation action TETRAMAX (“Technology Transfer via Multinational Application Experiments”). The experiments are the result of collaboration between academic researchers and small or medium enterprises in different EU countries. Presentations will cover novel applications and products involving sensors, IoT applications, drones, embedded controllers, FPGAs in the cloud, and GPU applications.

9 Subsessions

- TETRAMAX: Innovation hub for digitizing European SMEs
 7:30am - 7:40am, Sep 22

- Low-power IoT turn-key solution for Smart Agriculture: from field sensors to DSS service platform
 7:40am - 7:50am, Sep 22

- BLEeper: A low-cost outdoor location tracking solution for shoreline safety
 7:50am - 8:00am, Sep 22
9:00am

Industrial Session Networking
Ø 9:00am - 9:25am, Sep 22

9:30am

Test of Time Awards
Ø 9:30am - 9:55am, Sep 22

10:00am

Keynote: Digital Twins: Challenges and Opportunities in Various Industries
Ø 10:00am - 10:55am, Sep 22

Speaker: Dr. Prith Banerjee, CTO, ANSYS

Various industries such as Manufacturing, Energy and Utilities, Automotive, Aerospace and Defense, Logistics and Transportation, and Building Management, have proposed the use of Digital Twins to aid the Design, Analysis, Build, Manufacturing and Operations phases of asset-intensive industries. Digital Twins have a physical asset, a virtual asset (a simulation model of the asset), and a two-way information flow between the physical and virtual worlds using an IOT platform. While most companies use data-based analytics and machine learning to build Digital Twins, they require lots of training data and the accuracy is limited to the observed data. Some industries have started using physics based simulation to build digital twins and while these approaches are accurate they require long computation times to deploy. Most recently, companies are using Hybrid approaches combining data-based analytics and physics-based approaches to build these digital twins that are very accurate and require less training data, and drive high operational efficiency of assets and process industries and manufacturing plants. In this talk we will discuss the challenges and opportunities of digital twins in various industries and the latest research approaches.

11:00am
Heterogeneous processors have been at the heart of the state-of-the many-core architectures. This session presents latest scheduling, run-time management, and optimization of processor architecture under emerging work-loads.

Pre-recorded videos are also available [here](#).

5 Subsessions

- Fast and Correct Load-Link/Store-Conditional Instruction Handling in DBT Systems
 - 11:00am - 11:40am, Sep 22

- VisSched: An Auction based Scheduler for Vision Workloads on Heterogeneous Processors
 - 11:00am - 11:40am, Sep 22

- Dynamic Power and Energy Management for NCFET-based Processors
 - 11:00am - 11:40am, Sep 22

- FINDER: Find Efficient Parallel Instructions for ASIPs to Improve Performance of Large Applications
 - 11:00am - 11:40am, Sep 22

- NPU Thermal Management
 - 11:00am - 11:40am, Sep 22

The increasing complexity of embedded systems demands efficient system design methodologies to assist designers in optimizing and secure these systems. This session presents high-level synthesis and system-level design methods that can optimize design for different underlying architectures.

Pre-recorded videos are also available [here](#).

4 Subsessions

- Tensor Optimization for High-level Synthesis Design Flows
 - 11:00am - 11:40am, Sep 22

- AnyHLS: High-Level Synthesis with Partial Evaluation
 - 11:00am - 11:40am, Sep 22

- Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start
 - 11:00am - 11:40am, Sep 22

- MeXT-SE: A Design Tool to Transparently Generate Secure MPSoC
 - 11:00am - 11:40am, Sep 22
EMSOFT Session 3C: Hybrid Systems and Neural Networks

11:00am - 11:40am, Sep 22

* indicates Best Paper Candidate

Moderator: Sylvie Putot, École polytechnique, France

Falsification, verification, and applications of hybrid systems models and neural networks. The talks cover (a) a method for reducing stochastic reachability to adversary reachability of random ordinary differential equations over both finite and infinite time horizons; (b) an enhancement to the continuous and discrete post operators used to analyze reachability in linear hybrid systems, ensuring that most computations occur in a low-dimensional state space; (c) a falsification technique for hybrid systems based on searching an unconstrained space guided by the robustness of points in a corresponding space with input constraints; (d) an analysis of neural network output ranges based on iterative convex polygonal over-approximations encoded as a mixed-integer linear programming problem; and (e) a pruned reinforcement learning-based approach to optimize the frequency of background cleaning of log-structured file systems.

Pre-recorded videos are also available [here](#).

5 Subsessions

- **Safety Verification for Random Ordinary Differential Equations**
 11:00am - 11:40am, Sep 22

- *** Reachability Analysis of Linear Hybrid Systems via Block Decomposition**
 11:00am - 11:40am, Sep 22

- **Hybrid System Falsification under (In)equality Constraints via Search Space Transformation**
 11:00am - 11:40am, Sep 22

- **Divide and Slide: Layer-Wise Refinement for Output Range Analysis of Deep Neural Networks**
 11:00am - 11:40am, Sep 22

- **Pruning Deep Reinforcement Learning for Dual User Experience and Storage Lifetime Improvement on Mobile Devices**
 11:00am - 11:40am, Sep 22

11:45am

CASES Session 4A: Design Space Exploration

11:45am - 12:25pm, Sep 22

Moderator: Muhammad Shafique, Vienna University of Technology, Austria

Resource management is essential to improve performance and energy-efficiency of processors. This session presents papers addressing high level synthesis, memory management and security challenges in processor architectures.

Pre-recorded videos are also available [here](#).

5 Subsessions

- **Toward Speculative Loop Pipelining for High-Level Synthesis**
 11:45am - 12:25pm, Sep 22

- **Leveraging Prior Knowledge for Effective Design-Space Exploration in High-Level Synthesis**
 11:45am - 12:25pm, Sep 22
CODES+ISSS Session 4B: Security and Authentication
11:45am - 12:25pm, Sep 22

Moderator: Brett Meyer, McGill University, Canada

Safety-critical and life-critical systems require both security and resilience. This sessions presents new methods for control-flow integrity, authentication, and bit error resilience.

Pre-recorded videos are also available [here](#).

4 Subsessions

- **ABCFI:** Fast and Lightweight Fine-grained Hardware-assisted Control Flow Integrity
 11:45am - 12:25pm, Sep 22

- **ECG-based Authentication using Timing-Aware Domain-Specific Architecture**
 11:45am - 12:25pm, Sep 22

- **Efficient Return Address Verification Based on Dislocated Stack**
 11:45am - 12:25pm, Sep 22

- **Boosting Bit-Error Resilience of DNN Accelerators Through Median Feature Selection**
 11:45am - 12:25pm, Sep 22

EMSOFT Session 4C: Control, Sensing, and Probability
11:45am - 12:25pm, Sep 22

Moderator: Guillaume Baudart, IBM Watson, USA

Implementing and analyzing Cyber-Physical Systems with a particular focus on handling uncertainty and sensors. The talks present (a) a design methodology for co-designing software controllers and sensing capabilities that exploits physical units in the model to estimate unobservable state components; (b) a scheme for optimizing industrial control performance by switching between local controllers and edge servers in response to changing wireless network conditions; (c) a framework for modeling and analyzing noisy run-time monitoring systems using temporal logic and probabilistic techniques with an evaluation on an autonomous underwater vehicle; (d) a distributed algorithm that produces bounded state estimation errors in the presence of attacks and compromised sensors demonstrated using false data injection into a platoon of vehicles; and (e) an extension of UML sequence diagrams for modeling stochastic system inputs, message processing time, and network delays, with support for statistical model checking.

Pre-recorded videos are also available [here](#).

5 Subsessions

- **Automated Controller and Sensor Configuration Synthesis using Dimensional Analysis**
EMSOFT Session 4D: Systems-level Hardware and Software

Moderator: Bryan Ward, MIT Lincoln Laboratory, USA

Techniques for GPUs, MPSoCs, FPGAs, NoCs, Firmware, and microcontrollers. Namely, (a) a memory bandwidth allocation scheme for SoC platforms that dynamically monitors real-time applications and increases the bandwidth for best-effort applications when safe to do so; (b) an approach for reading and merging hardware event monitors across different runs for measurement-based time budgeting and verification, applied to an NXP T2080 platform; (c) increased support for real-time systems on HopliteRT, an FPGA-based network-on-chip, including the addition of priority-based routing and a new timing analysis; (d) a firmware vulnerability detection technique that tightly integrates fuzzing with real-time memory checking and which found sixteen previously unknown vulnerabilities; and (e) an adaptation of an existing application sandbox to resource-constrained microcontrollers aimed at practical use on IoT devices.

Pre-recorded videos are also available [here](#).
12:30pm - 1:00pm, Sep 22

CODES+ISSS Networking

12:30pm - 1:00pm, Sep 22

EMSOFT Networking

12:30pm - 1:00pm, Sep 22

1:00pm

Industry Live Q&A Session - Xilinx embedded solutions

1:00pm - 1:30pm, Sep 22

Cathal McCabe, Xilinx University Program, will give a 15 – 20 minutes introduction on the embedded solutions portfolio followed by the opportunity to ask questions.

Speakers

Hugo Andrade

Cathal McCabe

1:30pm

Embedded Systems Educational Resources from ARM

1:30pm - 2:00pm, Sep 22

Richard Buttrey and Robert Iannello from Arm Education will provide an overview of the digital resources created for academics and students to assist in the transition to online learning in the wake of the COVID-19 pandemic.

Speakers

Robert Iannello

Richard Buttrey

Wed, Sep 23, 2020

9:30am

Best Paper and Other Awards

9:30am - 9:55am, Sep 23

Presentation of Best Paper Awards for CASES, CODES+ISSS, EMSOFT, ACM Transactions on Embedded Computing Systems (TECS), and SIGBED Frank Anger Memorial Award.

10:00am

Panel - Post COVID-19 Cyber Security – The Challenges and Solutions

10:00am - 10:55am, Sep 23
Plenary

Moderator: Sri Parameswaran – UNSW

Speaker

Sri Parameswaran

11:00am

CASES Session 5A: Security and Reliability

11:00am - 11:40am, Sep 23

Moderator: Sai Manoj, George Mason University, USA

Secure and Reliable system design is essential for building a sustainable computing eco system. This session highlights papers addressing security and reliability challenges at various levels of computing stack starting from auto-motive to embedded systems to biochips.

Pre-recorded videos are also available [here](#).

5 Subsessions

- **INDRA:** Intrusion Detection using Recurrent Autoencoders in Automotive Embedded Systems
 11:00am - 11:40am, Sep 23

- **SAECAS:** Secure Authenticated Execution using CAM-based Vector Storage
 11:00am - 11:40am, Sep 23

- **Exposing Hardware Trojans in Embedded Platforms via Short-Term Aging**
 11:00am - 11:40am, Sep 23

- **Extending the Lifetime of MEDA Biochips by Selective Sensing on Microelectrodes**
 11:00am - 11:40am, Sep 23

- **Sparsity Turns Adversarial: Energy and Latency Attacks on Deep Neural Networks**
 11:00am - 11:40am, Sep 23

CODES+ISSS Session 5B: Biomedical, Environmental, and UAV Systems

11:00am - 11:40am, Sep 23

Moderator: Gunar Schirner, Northeastern University, USA

This session explores the design and optimization to embedded system for remote health monitoring, underwater marine life imaging, and large-scale environmental monitoring.

Pre-recorded videos are also available [here](#).

5 Subsessions

- **Modular Design and Optimization of Biomedical Applications for Ultra-Low Power Heterogeneous Platforms**
 11:00am - 11:40am, Sep 23

- **Energy-Efficient Image Recognition System for Marine Life**
EMSOFT Session 5C: Memory and GPUs
11:00am - 11:40am, Sep 23

Moderator: Nan Guan, The Hong Kong Polytechnic University

Improving the performance and exploiting the properties of GPUs, SSDs, ReRAMs, DRAMs, and paging on portable devices. The talks present (a) a framework for latency-aware data initialization of GPUs, such as the NVIDIA TX2 and AGX platforms, to better support mobile/edge applications; (b) a technique that exploits bit-error rate variation among vertical layers of 3D NAND flash to improve read throughput and latency in multichip SSDs; (c) an adaptive data-manipulation strategy for reducing analog variation errors in ReRAM-based crossbar accelerators for neural network applications; (d) a set of software-based algorithms for deriving physical unclonable functions from DRAM by altering timing parameters; and (e) a framework for swapping on mobile devices that maximizes application caching capability while minimizing negative impacts on users.

Pre-recorded videos are also available [here](#).

5 Subsessions

- **Enabling Latency-aware Data Initialization for Integrated CPU/GPU Heterogeneous Platform**
 11:00am - 11:40am, Sep 23

- **Error Diluting: Exploiting 3D-NAND Flash Process Variation for Efficient Read on LDPC-based SSDs**
 11:00am - 11:40am, Sep 23

- **On Minimizing Analog Variation Errors to Resolve the Scalability Issue of ReRAM-based Crossbar Accelerators**
 11:00am - 11:40am, Sep 23

- **Fast DRAM PUFs on Commodity Devices**
 11:00am - 11:40am, Sep 23

- **SEAL: User Experience Aware Two-Level Swap for Mobile Devices**
 11:00am - 11:40am, Sep 23

11:45am

CASES Session 6A: Embedded Machine Learning: On Device Storage, Training, and Acceleration
11:45am - 12:25pm, Sep 23

Moderator: Jana Doppa, Washington State University, USA

Machine Learning (ML) algorithms play important roles in emerging embedded systems. This session presents papers highlighting ML algorithms fine-tuned for embedded systems.
4 Subsessions

- Enabling On-Device CNN Training by Self-Supervised Instance Filtering and Error Map Pruning
 - 11:45am - 12:25pm, Sep 23

- DeepPrefetcher: A Deep Learning Framework for Data Prefetching in Flash Storage Devices
 - 11:45am - 12:25pm, Sep 23

- WinDConv: A Fused Datapath CNN Accelerator for Power-efficient Edge Devices
 - 11:45am - 12:25pm, Sep 23

- UltraTrail: A Configurable Ultra-Low Power TC-ResNet AI Accelerator for Efficient Keyword Spotting
 - 11:45am - 12:25pm, Sep 23

CODES+ISSS Session 6B: Memory and Scheduling
- 11:45am - 12:25pm, Sep 23

Moderator: Zili Shao, The Chinese University of Hong Kong

Memory accesses, memory architectures, and scheduling play important roles in the performance of the embedded systems. This session explores the optimization for algorithms, memory architectures, virtual memory, thread migration, and task scheduling.

Pre-recorded videos are also available here.

5 Subsessions

- Shift-limited Sort: Optimizing Sorting Performance on Skyrmion Memory based Systems
 - 11:45am - 12:25pm, Sep 23

- ReSQM: Accelerating Database Operations Using ReRAM-based Content Addressable Memory
 - 11:45am - 12:25pm, Sep 23

- When Storage Response Time Catches Up with Overall Context Switch Overhead, What is Next?
 - 11:45am - 12:25pm, Sep 23

- Hardware-Level Thread Migration to Reduce On-Chip Data Movement via Reinforcement Learning
 - 11:45am - 12:25pm, Sep 23

- Runtime Task Scheduling using Imitation Learning for Heterogeneous Many-Core Systems
 - 11:45am - 12:25pm, Sep 23

EMSOFT Session 6C: Modeling and Verification
- 11:45am - 12:25pm, Sep 23

Moderator: Ichiro Hasuo, National Institute of Informatics, Japan

Formal methods for synthesis and verification of discrete and continuous systems. Namely, (a) an
automated debugging methodology for Simulink models based on bug localization with Signal Temporal Logic and model repair with automated parameter tuning; (b) a method for mining a broad fragment of Shape Expressions from time-series data using techniques from linear regression, unsupervised clustering, and learning finite automata; (c) an algorithm for soundly synthesizing distributed systems based on iteratively building assumptions and guarantees at each process using reactive synthesis; (d) a formalism for online monitoring that relaxes the causality restriction of other approaches and is, for instance, suitable for monitoring physiological signals in medical devices; and (e) a model checking approach for finite-time safety verification of black-box continuous-time systems based on probably approximately correct learning.

Pre-recorded videos are also available here.

5 Subsessions

- **Specification Guided Automated Debugging of CPS Models**
 11:45am - 12:25pm, Sep 23

- **Mining Shape Expressions from Examples**
 11:45am - 12:25pm, Sep 23

- **Assume-Guarantee Distributed Synthesis**
 11:45am - 12:25pm, Sep 23

- **Online Signal Monitoring with Bounded Lag**
 11:45am - 12:25pm, Sep 23

- **PAC Model Checking of Black-Box Continuous-Time Dynamical Systems**
 11:45am - 12:25pm, Sep 23

12:30pm

- **Meet the Award Winners**
 12:30pm - 1:00pm, Sep 23

- **CASES Networking**
 12:30pm - 1:00pm, Sep 23

- **CODES+ISSS Networking**
 12:30pm - 1:00pm, Sep 23

- **EMSOFT Networking**
 12:30pm - 1:00pm, Sep 23

Thu, Sep 24, 2020

8:15am

- **RSP Opening and Keynote**
 8:15am - 9:00am, Sep 24

The International Workshop on Rapid System Prototyping (RSP) emphasizes design experience sharing and collaborative approach between hardware and software research communities from industry and academy. It considers prototyping as an iterative design approach for embedded hardware and software systems. The RSP series of workshop aim at bridging the gaps in embedded system design between
applications, architectures, tools, and technologies to achieve rapid system prototyping of emerging software and hardware systems.

2 Subsessions

- **Welcome - Opening Remarks**
 - 8:15am - 8:30am, Sep 24

- **Keynote: Quantizing neural networks for ultra-low-precision computation**
 - 8:30am - 9:00am, Sep 24

9:00am

RSP Session A

- 9:00am - 9:30am, Sep 24

 Session Chair: Sungjoo Yoo, Seoul National University

 Pre-recorded videos are also available [here](#).

3 Subsessions

- **Hardware-in-the-loop simulation with dynamic partial FPGA reconfiguration applied to computer vision in ROS-based UAV**
 - 9:00am - 9:30am, Sep 24

- **Advanced Debugging Architecture for Smart Inertial Sensors using Sensor-in-the-Loop**
 - 9:00am - 9:30am, Sep 24

- **A combined fast/cycle accurate simulation tool for reconfigurable accelerator evaluation: application to distributed data management**
 - 9:00am - 9:30am, Sep 24

AAIEA

- 9:00am - 5:00pm, Sep 24

 Workshop on Accelerating Artificial Intelligence for Embedded Autonomy (AAIEA)

 The preliminary program has been posted on-line

 https://alessandro-pinto.github.io/aaiea2020/5_program/

 This year, we are featuring a good mix of talks from industry and academia, and spanning theory and practice.

 We are planning for a very interactive virtual workshop. If you are working in the area of intelligence at the edge, consider joining us for this interesting virtual session.

 10:15 - 10:30

 Introduction to the workshop

 Workshop organizers

 10:30 - 11:00

 The Graphcore Intelligence Processing Unit - A new processor architecture for machine intelligence

 Dr. George Mathew

 AI Applications Specialist, Graphcore

 11:00 - 11:30

 Automated Design of Efficient Deep Neural Networks for the edge
Invited Talks

10:15am - 4:00pm, Sep 24

Bichen Wu
University of California, Berkeley
11:30 - 12:00
Analog resistive crossbar arrays for deep learning acceleration
Dr. Martin M. Frank
IBM T.J. Watson Research Center
12:00 - 13:00
Lunch break
13:00 - 13:45 : Keynote
Human-Centric Computing
Jan M. Rabaey
Donald O. Pederson Distinguished Professor, EECS Department, University of California, Berkeley
13:45 - 14:00
Break
14:00 - 14:30
Implementing Deep Learning on a Small UAS for an ISR Mission
Dr. Arjuna Flenner
Senior Technical Leader – AI & Image Processing, Advanced & Special Programs, GE Aviation Systems
14:30 - 15:00
Autonomy at the Edge: Ultra-Low Power Hardware Design for Intelligent Micro-robotics
Arijit Raychowdhury
Professor, Electrical and Computer Engineering, Georgia Institute of Technology
15:00 - 15:30
Real-time Motion Planning for the Masses
Dan Sorin
Addy Professor of Electrical and Computer Engineering and of Computer Science, Duke University
15:30 - 16:00 : Concluding Remarks and next steps
Enabling the Future of Embedded Autonomy

1 Subsessions

- Invited Talks
 - 10:15am - 4:00pm, Sep 24

MSC

9:00am - 5:00pm, Sep 24

International Workshop on Memory and Storage Computing (MSC)
MSC will start at Beijing time (Sept. 24, 9:00am-17:00pm).
https://zoom.com.cn/j/91561647801?pwd=eVU1MDjrNEpETE9zcE9iNnmQrzE2tEQT09
Password: 0924
Program:

1. [Analog resistive crossbar arrays for deep learning acceleration](#)
2. [Human-Centric Computing](#)
3. [Implementing Deep Learning on a Small UAS for an ISR Mission](#)
4. [Autonomy at the Edge: Ultra-Low Power Hardware Design for Intelligent Micro-robotics](#)
5. [Real-time Motion Planning for the Masses](#)
6. [Concluding Remarks and next steps](#)

Enabling the Future of Embedded Autonomy
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speakers and Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-10:00</td>
<td>KEYNOTES</td>
<td>Li Jiang, Shanghai Jiaotong U</td>
</tr>
<tr>
<td>10:00-10:20</td>
<td>One-Memory Computer System: When the Line Between Main Memory and Storage is Blurred via NVRAM</td>
<td>Shuo-Han Chen, National Taipei University of Technology</td>
</tr>
<tr>
<td>10:20-10:40</td>
<td>Toward Instantaneous Sanitization through Disturbance-induced Errors and Recycling Programming over 3D Flash Memory</td>
<td>Chien-Chung Ho, National Chung Cheng University</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>How to cultivate a green decision tree without loss of accuracy?</td>
<td>Tseng-Yi Chen, National Central University</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>Exploring the Memory Heterogeneity for Performance Tuning</td>
<td>Che-Wei Chang, Chang Gung University</td>
</tr>
<tr>
<td>11:20-11:40</td>
<td>Scalable, Efficient, and Compact Frequent-Pattern Mining on Nonvolatile Memories</td>
<td>Po-Chun Huang, National Taipei University of Technology</td>
</tr>
<tr>
<td>13:30-14:10</td>
<td>Invited talk</td>
<td>Ning Zheng, Sc fluid</td>
</tr>
<tr>
<td>14:10-16:00</td>
<td>Invited Presentation</td>
<td>Feng Wang, Peking University</td>
</tr>
<tr>
<td>16:00-17:00</td>
<td>Presentation Papers</td>
<td>Mingyue Liu, SEU</td>
</tr>
</tbody>
</table>

5 Subsessions

- **keynote: ReRAM-based In-Memory Computing – an algorithm –architecture co-design approach towards the POS/w era**
 - 9:00am - 10:00am, Sep 24

- **Invited Session 1**
 - 10:00am - 12:00pm, Sep 24

- **Invited Talk: How computational storage could benefit database applications**
 - 1:00pm - 2:00pm, Sep 24

- **Invited Session 2**
 - 2:00pm - 4:00pm, Sep 24

- **Paper Presentation**
 - 4:00pm - 5:00pm, Sep 24

NOCS - Opening Remarks & Keynote I
- 9:00am - 10:10am, Sep 24

3 Subsessions

- **Opening Remarks**
9:00am - 9:05am, Sep 24

- **Keynote I:** “Network Congestion: Analysis and Effective Solutions for Datacenters”
 - 9:05am - 10:05am, Sep 24

- **Break**
 - 10:05am - 10:10am, Sep 24

9:40am

RSP Session B
- 9:40am - 10:10am, Sep 24
- **RSP**

 Session Chair: Kenneth Kent, University of New Brunswick

Pre-recorded videos are also available [here](#).

3 Subsessions

- **Mathematic models based on multiple-criteria decision analysis for tuning industrial CNN in an FPGA computing cluster**
 - 9:40am - 10:10am, Sep 24

- **MPSoC Fast Prototyping of a Reconfigurable DU Downlink Transmission Chain for 5G New Radio**
 - 9:40am - 10:10am, Sep 24

- **FPGA based design and prototyping of efficient 5G QC-LDPC channel decoding**
 - 9:40am - 10:10am, Sep 24

10:00am

HENP
- 10:00am - 12:30pm, Sep 24
- **HENP**

International Workshop on Highly Efficient Neural Processing (HENP)

https://acm-org.zoom.us/j/99050284189?pwd=eXM3VE00UGxBb0pOa29HVINWNGdxQT09

The International Workshop on Highly Efficient Neural Processing is a forum for presentations of state-of-the-art research in highly efficient neural processing. This year’s online workshop consists of invited oral presentations from Amazon, UC Berkeley, Facebook, Furiosa AI, and SNU.

- “Furiosa Renegade: the next-generation high performance AI chip for data center,” Dr. June Paik, Furiosa AI
- “Position-based Scaled Gradient for Model Quantization,” Prof. Nojun Kwak, Seoul National University
- “Moving Big Cloud Applications to the Edge: NLP and Recommendation Systems,” Prof. Kurt Keutzer, University of California, Berkeley
- “Accelerating the Pace of AWS Inferentia Chip Development, From Concept to End Customers Use,” Dr. Randy Huang, Amazon Web Services
- “Efficient Audio-Visual Understanding on AR Devices,” Dr. Vikas Chandra, Facebook

1 Subsessions

- **Invited talks**
 - 10:00am - 12:30pm, Sep 24
10:10am

NOCS - Regular Paper Session A: "Architecture & RDMA"

- **In-Network Memory Access Ordering for Heterogeneous Multicore Systems**
 - 10:10am - 10:30am, Sep 24

- **Scheduled Deflections for Resilient Bufferless Networks-on-Chip**
 - 10:30am - 10:45am, Sep 24

- **Combinatorics and Geometry of Memory Access Structures for the Many-ported, Distributed and Shared Memory Architecture**
 - 10:45am - 11:00am, Sep 24

- **PART: Pinning Avoidance in RDMA Technologies**
 - 11:00am - 11:20am, Sep 24

- **Break**
 - 11:20am - 11:30am, Sep 24

10:20am

RSP Session C

- **(System)Verilog to Chisel Translation for Faster Hardware Design**
 - 10:20am - 10:50am, Sep 24

- **NestedNet: A Container-based Prototyping Tool for Hierarchical Software Defined Networks**
 - 10:20am - 10:50am, Sep 24

- **Desired Footprint by Technology Mapping Modification using a Genetic Algorithm in Odin II**
 - 10:20am - 10:50am, Sep 24

11:30am

NOCS - Special Session A: "Unlock the NoC: Transforming NoC Research with Physical Design Awareness"

- Session Chairs: Chris Batten (Cornell) and Michael Taylor (University of Washington)
 - 11:30am - 1:00pm, Sep 24
Special Session A: "Unlock the NoC: Transforming NoC Research with Physical Design Awareness"

Session Chairs: Chris Batten (Cornell) and Michael Taylor (University of Washington)

Overview

Chris Batten (Cornell) and Michael Taylor (University of Washington)

Ruche Networks: Wire-Maximal, No-Fuss NoCs
Dai Cheol Jung, Scott Davidson, Chun Zhao, Dustin Richmond and Michael Bedford Taylor (University of Washington)

Implementing Low-Diameter On-Chip Networks Using a Tiled Physical Design Methodology
Yanghui Ou, Shady Agwa, Christopher Batten (Cornell University)

NoC Symbiosis
Daniel Petrisko, Chun Zhao, Scott Davidson, Paul Gao, Dustin Richmond and Michael Bedford Taylor (University of Washington)

Fri, Sep 25, 2020

9:00am

NOCS - Regular Paper Session B: "Multicast & Security"

Session Chair: TBD

Mirror for Chinese viewers: https://www.bilibili.com/video/BV1th411R794

(L) **An Efficient Multicast Router using Shared-Buffer with Packet Merging for Dataflow Architecture**
Yi Li, Meng Wu, Xiaochun Ye, Wenming Li and Dongrui Fan

(L) **SecONet: A Security Framework for a Photonic Network-on-Chip**
Janibul Bashir, Chandran Goodchild and Smruti R. Sarangi

(L) **SECTAR: Secure NoC using Trojan Aware Routing**
Manju R, Abhijit Das, John Jose and Prabhat Mishra

4 Subsessions

- **An Efficient Multicast Router using Shared-Buffer with Packet Merging for Dataflow Architecture**
 9:00am - 9:20am, Sep 25

- **SecONet: A Security Framework for a Photonic Network-on-Chip**
 9:20am - 9:40am, Sep 25
10:00am

NOCS - Keynote II: “Domain-Specific Networks for Machine Learning”
10:00am - 11:00am, Sep 25

Keynote II: “Domain-Specific Networks for Machine Learning”
Speaker: Dennis Abts (Groq)
Session Chair: John Kim (KAIST)

11:00am

NOCS - Regular Paper Session C: "Technology in Communication"
11:00am - 12:00pm, Sep 25

Regular Paper Session C: "Technology in Communication"
Session Chair: TBD

Mirror for Chinese viewers: https://www.bilibili.com/video/BV1hk4y1y7F8

(L) PROTEUS: Rule-Based Self-Adaptation in Photonic NoCs for Loss-Aware Dynamic Co-Optimization of Performance and Laser Power
Sairam Sri Vatsavai, Venkata Sai Praneeth Karempudi and Ishan Thakkar

(S) Improving Inference Latency and Energy of DNNs through Wireless Enabled Multi Chip-Module-based Architectures and Model Parameters Compression
Maurizio Palesi, Giuseppe Ascia, Davide Patti, Salvatore Monteleone, Vincenzo Catania and Andrea Mineo

11:55am

Break
11:55am - 12:00pm, Sep 25
Special Session B: "Scalable Platforms for Machine Learning: An Industry Perspective"
Session Chair: TBD

Accelerating the Network for Deep Learning at Scale
Benjamin Klenk (NVidia)

The Wafer Scale Interconnect in the Wafer Scale Engine
Robert Hesse (Cerebras)

2 Subsessions

- Accelerating the Network for Deep Learning at Scale
 ⏺ 12:00pm - 12:45pm, Sep 25

- The Wafer Scale Interconnect in the Wafer Scale Engine
 ⏺ 12:45pm - 1:30pm, Sep 25