Table of Contents

- General Chairs' Welcome Message 3
- General Information ... 4
- ESWEEK 2018 Overview ... 5
- Conference Venue Floorplan 6
- Sponsors ... 7
- Best Paper Candidates ... 8
- Tutorial Schedule ... 9
- Monday Program .. 13
- F1/10 Challenge ... 18
- Tuesday Program ... 19
- Wednesday Program .. 25
- Workshops ... 32
 - EWii’18 Workshop .. 33
 - HENP’18 Workshop ... 33
 - Intesa’18 Workshop ... 33
 - CyPhy’18 .. 34
 - WESE’18 .. 34
- Symposia ... 35
 - NOCS’18 .. 35
 - RSP ... 37
- Committees .. 38
 - ESWEEK Committees .. 38
 - CASES Committees .. 39
 - CODES + ISSS Committees 40
 - EMSOFT Committees ... 42
Welcome to ESweek 2018 in Torino!

Embedded Systems Week (ESWEEK) is the premier event covering all aspects of embedded systems and software. By bringing together three leading conferences (CASES, CODES+ISSS, EMSOFT), a special track on IoT (Internet of Things), two symposia (RSP, NOCS), and hot-topic workshops and tutorials, ESWEEK presents attendees a wide range of topics unveiling state of the art embedded systems design and HW/SW architectures. This year F1/10 challenge is also held as a special event.

Following the journal-integrated publication model started last year for the conferences CASES, CODES+ISSS, and EMSOFT, all regular papers presented in ESWEEK 2018 will be published in the IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. To this end, the review process of the conferences was conducted in two stages with the opportunity of minor/major revisions before the final decision. Acceptance rates have been about 25.5% for all conferences with a total number of 270 submissions to the journal track. In addition, 50 Work-in-Progress track papers have been selected and will be published in the ESWEEK Proceedings.

The technical program on Monday, Tuesday, and Wednesday consists of 5 special sessions and 26 regular sessions from the three conferences. There is a strong emphasis on interaction as at the end of each session there is a poster presentation during which all presented papers can be discussed with the authors.

Like previous two years, we will make Tuesday a special IoT day, focusing on the newest developments in the “Internet of Things” (IoT), from an embedded systems point of view. A sequence of three sessions is exclusively devoted to this subject with contributions from all of the three conferences and one special session.

Highlights of the ESWEEK program are three distinguished keynote talks by prominent leaders in academia and industry, covering most relevant trends for future embedded systems and providing deep insights into technology drivers. Thomas A. Henzinger, president of IST(Institute of Science and Technology) Austria, presents a formal framework for specifying and monitoring rich temporal properties of real-valued signals and its application to micro-electronics: “The First-Order Logic of Signals.” Ahmad-Reza Sadeghi from the TU Darmstadt, Germany will address various security and privacy challenges in the growing IoT landscape and a solution approach in the keynote: “Hitchhiker’s Guide to the IoT Galaxy full of Security & Privacy Challenges (An Attempt).” Finally, the Wednesday keynote will be given by Dr. Jie Liu, Partner Research Manager and the GM of the Ambient Intelligent Team at Microsoft AI Perception and Mixed Reality, with the title “Outside-In Autonomous Systems.”

The tutorials on Sunday precede the conferences and are an excellent opportunity to get in-depth knowledge in new trends and hot topics. There are four half-day tutorials and one full-day tutorial, covering a wide scope, from embedded machine learning and approximate computing up to manycore resource management, trustworthy microkernel, and schedulability analysis. As a special event, F1/10 Autonomous Racing Competition will be held on Monday after regular sessions complete, followed by three lunch tutorials from Monday to Wednesday on how to build, run, and race the F1/10 car. During the lunch hour on Monday and Tuesday, we will also have two industrial tutorials offered by industry sponsors: ARM and Xilinx. On Wednesday, we will initiate a special lunch meeting for women attendants, called “Women in ESWEEK,” to encourage their contribution to embedded systems research.

Thursday and Friday are the days for the symposia and workshops. Besides two symposia, RSP (Rapid System Prototyping) and NOCS (Networks on Chip), we will have four workshops covering a wide range of important topics in embedded systems. They are Highly Efficient Neural Processing (HENP), INtelligent Embedded Systems Architecture and Applications (INTESA), Embedded Operating System Workshop (EWiII), and a merger of Model-Based Design of Cyber Physical Systems (CyPhy) and Embedded and Cyber-Physical Systems Education (WESE). The conference program will conclude with the traditional panel on Wednesday afternoon focusing on “CPS: Here to stay or another fad?” Top experts from academia and industry will share their views on this controversial topic.

The organization of ESWEEK was only possible with the continuous support and help from many volunteers: The program chairs with their program committee members, the organizers of workshops, tutorials and symposia, all members of the organization committee, and last but not least, the local arrangements chairs and their team. Our special thank goes to the IEEE CEDA for their full support for our journal-integrated publication model of ESWEEK.

We are looking forward to meeting you at the inspiring and interesting ESWEEK 2018 in Torino!

Soonhoi Ha | General Chair
Seoul National Univ., Korea

Petru Eles | Vice-General Chair
Linköping Univ., SE
Welcome to Torino

Torino (Turin in English) is an important business and cultural centre in northern Italy, capital of the Piedmont region, located mainly on the left bank of the Po River, surrounded by the western Alpine arch. The population of the urban area is estimated to be 1.7 million people. The city has a rich culture and history, and is known for its numerous art galleries, restaurants, churches, palaces, opera houses, city squares, parks, gardens, theatres, libraries, museums and other venues. Turin is well known for its baroque, rococo, neo-classical, and Art Nouveau architecture. Much of the city’s public squares, castles, gardens and elegant palazzi such as Palazzo Madama, were built in the 16th and 18th century, after the capital of the Duchy of Savoy was moved to Turin from Chambéry (nowadays in France), as part of the urban expansion.

Torino is sometimes called the “cradle of Italian liberty,” for having been the birthplace and home of notable politicians and people who contributed to the Renaissance, such as Cavour, a leading figure in the movement toward Italian unification, and many of the protagonists of Italian political and social life in the 20th century, among the others, Antonio Gramsci, Piero Gobetti, and Palmiro Togliatti. The city used to be a major European political centre, being Italy’s first capital in 1861 and being home to the House of Savoy, the Italian royal family. The city currently hosts some of the best Italian universities, colleges, academies, such as the six-century-old Univ. di Torino and the prestigious Engineering school Politecnico di Torino.

In addition to the Italian cuisine, the region around Torino offers some specialties that include: a variety of cheese from the neighboring mountains. Dessert traditions include creative uses of hazelnuts cream. The region has seen the birth of internationally recognized movements, such as SlowFood, and of the Eataly “gourmet” grocery and restaurant chain. Torino is the home of several micro-breweries, winners of international prizes every year.

Turin hosts prestigious museums and monuments, including the Egyptian Museum (the oldest museum entirely dedicated to Ancient Egypt and the second largest after Cairo’s) and the Mole Antonelliana (featured on the Italian 2 cent euro coins). Turin’s several monuments and sights make it one of the world’s top 250 tourist destinations. Turin is also well known as the home of the Shroud of Turin, the football teams Juventus F.C. and Turin F.C., the headquarters of automobile manufacturers FIAT, Lancia and Alfa Romeo, and as host of the 2006 Winter Olympics. Several International Space Station modules, such as Harmony, Tranquility, and Columbus, were also manufactured at the Thales Alenia Space factory in Turin. Turin is the only Italian city enlisted in the New York Times “52 Places to Go in 2016” guide.

Conference Registration Fees

Conference registration allows attendance to any of the three ESWEEK conferences, CODES+ISSS, CASES, and EMSOFT. Conference registration includes lunch on conference days, online conference proceedings, the Sunday Welcome Reception, and one ticket to the banquet. Student Conference registration does not include a banquet ticket, but one can be purchased. Workshops, Tutorials, and Symposia can be added on to your registration for an additional fee.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Member</td>
<td>$900</td>
</tr>
<tr>
<td>Conference Non-Member</td>
<td>$1000</td>
</tr>
<tr>
<td>Conference Student Member</td>
<td>$450</td>
</tr>
<tr>
<td>Conference Student Non-Member</td>
<td>$600</td>
</tr>
<tr>
<td>One Day Workshop Member</td>
<td>$350</td>
</tr>
<tr>
<td>One Day Workshop Student</td>
<td>$250</td>
</tr>
<tr>
<td>Two Day Workshop Member</td>
<td>$400</td>
</tr>
<tr>
<td>Two Day Workshop Student</td>
<td>$300</td>
</tr>
<tr>
<td>Symposia</td>
<td></td>
</tr>
<tr>
<td>NOCS Member</td>
<td>$550</td>
</tr>
<tr>
<td>NOCS Student</td>
<td>$380</td>
</tr>
<tr>
<td>RSP Member</td>
<td>$400</td>
</tr>
<tr>
<td>RSP Student</td>
<td>$300</td>
</tr>
<tr>
<td>Sunday, September 30</td>
<td>Monday, October 1</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Tutorials</td>
<td>Opening Session</td>
</tr>
<tr>
<td>Welcome Reception</td>
<td>Keynote by Thomas Henzinger</td>
</tr>
<tr>
<td></td>
<td>CASES, CODES+ISSS, & EMSOFT Sessions</td>
</tr>
<tr>
<td></td>
<td>Poster Sessions</td>
</tr>
<tr>
<td></td>
<td>Technical Program Committee Dinner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wednesday, October 3</th>
<th>Thursday, October 4</th>
<th>Friday, October 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keynote by Jie Liu</td>
<td>EWiLi’18 Workshop</td>
<td>EWiLi’18 Workshop</td>
</tr>
<tr>
<td>CASES, CODES+ISSS & EMSOFT Sessions</td>
<td>HENP’18 Workshop</td>
<td>HENP’18 Workshop</td>
</tr>
<tr>
<td>Poster Sessions</td>
<td>INTESA’18 Workshop</td>
<td>NOCS’18 Symposium</td>
</tr>
<tr>
<td>Best Paper Awards Ceremony</td>
<td>CyPhy’18 Workshop</td>
<td>RSP Symposium</td>
</tr>
<tr>
<td>ESWEEK Panel</td>
<td>WESE’18 Workshop</td>
<td></td>
</tr>
</tbody>
</table>
Thank You to Our Sponsoring Societies

Thank You to Our Silver Sponsors

Thank You to Our Gold Sponsors

Thank You to Our Silver Sponsors
BEST PAPER CANDIDATES

CASES
MINIMALLY BIASED MULTIPLIERS FOR APPROXIMATE INTEGER AND FLOATING-POINT MULTIPLICATION
Authors:
Hassaan Saadat - Univ. of New South Wales
Haseeb Bokhari - Open Access Pty Ltd
Sri Parameswaran - Univ. of New South Wales

HI-DMM: HIGH-PERFORMANCE DYNAMIC MEMORY MANAGEMENT IN HIGH-LEVEL SYNTHESIS
Authors:
Tingyuan Liang - Hong Kong Univ. of Science and Technology
Jieru Zhao - Hong Kong Univ. of Science and Technology
Liang Feng - Hong Kong Univ. of Science and Technology
Sharad Sinha - Indian Institute of Technology
Wei Zhang - Hong Kong Univ. of Science and Technology

DEEPTRAIN: A PROGRAMMABLE EMBEDDED PLATFORM FOR TRAINING DEEP NEURAL NETWORKS
Authors:
Duckhwan Kim - Georgia Institute of Technology
Taesik Na - Georgia Institute of Technology
Sudhakar Yalamanchili - Georgia Institute of Technology
Saibal Mukhopadhyay - Georgia Institute of Technology

CODES + ISSS
XNOR NEURAL ENGINE: A HARDWARE ACCELERATOR IP FOR 21.6 FJ/OP BINARY NEURAL NETWORK INFEERENCE
Authors:
Francesco Conti - Eidgenössische Technische Hochschule Zürich & Univ. of Bologna
Pasquale Davide Schiavone - Eidgenössische Technische Hochschule Zürich
Luca Benini - Eidgenössische Technische Hochschule Zürich & Univ. of Bologna

MALOC: A FULLY PIPELINED FPGA ACCELERATOR FOR CONVOLUTIONAL NEURAL NETWORKS WITH ALL LAYERS MAPPED ON CHIP
Authors:
Lei Song - Univ. of Science and Technology of China
Chao Wang - Univ. of Science and Technology of China
Xi Li - Univ. of Science and Technology of China
Huaping Chen - Univ. of Science and Technology of China
Xuehai Zhou - Univ. of Science and Technology of China

SYNTHESIS OF MONITORS FOR NETWORKED SYSTEMS WITH HETEROGENEOUS SAFETY REQUIREMENTS
Authors:
Mischa Möstl - Technische Univ. Braunschweig
Johannes Schlatow - Technische Univ. Braunschweig
Rolf Ernst - Technische Univ. Braunschweig

EMSOFT
TWO-LAYERED FALSIFICATION OF HYBRID SYSTEMS GUIDED BY MONTE CARLO TREE SEARCH
Authors:
Zhenya Zhang - National Institute of Informatics & Graduate Univ. for Advanced Studies
Gidon Ernst - National Institute of Informatics
Sean Sedwards - Univ. of Waterloo
Ichiro Hasuo - National Institute of Informatics & Graduate Univ. for Advanced Studies

REAL-TIME DATA RETRIEVAL WITH MULTIPLE AVAILABILITY INTERVALS IN CPS UNDER FRESHNESS CONSTRAINTS
Authors:
Chenchen Fu - City Univ. of Hong Kong
Peng Wu - Univ. of Connecticut
Minming Li - City Univ. of Hong Kong
Jason Xue - City Univ. of Hong Kong
Yingchao Zhao - Cityas Institute of Higher Education
Song Han - Univ. of Connecticut

BOUNDING DRAM INTERFERENCE IN COTS HETEROGENEOUS MPSoCs FOR MIXED CRITICALITY SYSTEMS
Authors:
Mohamed Hassan - Univ. of Guelph & Intel Corporation
Rodolfo Pellizzoni - Univ. of Waterloo
<table>
<thead>
<tr>
<th>Giolitti</th>
<th>Einaudi</th>
<th>Sella</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 13:00</td>
<td>Embedded Machine Learning Today and Tomorrow</td>
<td>Schedulability Analysis Under Uncertainty Using Formal Methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td></td>
<td>Lunch \</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 18:00</td>
<td>Kickstarting Developing on seL4, the World’s Most Trustworthy and Difficult to Work With Microkernel</td>
<td>A Comprehensive Analysis of Approximate Computing Techniques: From Component- to Application-Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schedulability Analysis Under Uncertainty Using Formal Methods</td>
</tr>
<tr>
<td>18:30</td>
<td>Welcome Reception \</td>
<td>Caffe’ Torino</td>
</tr>
</tbody>
</table>
The tutorial will start with an overview of architectures and systems for machine learning available today, with a focus on advanced techniques to boost energy efficiency for ML accelerators, such as exploiting temporal redundancy, sparsity and reduced precision in inference and training. We will then cover some of the recent progress and challenges in implementing machine learning algorithms using analog resistive memory devices. Finally, we will discuss spiking neural networks and the properties and advantages that are unique to them, including new algorithms applied on spatiotemporal data. The emulation of these bio-inspired mechanisms, through the physics of nanodevices, particularly memristors, will be covered.

BIOGRAPHIES:
Luca Benini holds the chair of digital Circuits and systems at ETHZ and is Full Professor at the Università di Bologna. He received a PhD degree from Stanford Univ. in 1997. Dr. Benini's research interests are in energy-efficient system design, from embedded to high-performance computing. He is also active in the design of ultra-low power VLSI circuits for machine learning. He is a Fellow of the IEEE, of the ACM and a member of the Academia Europaea. He is the recipient of the 2016 IEEE CAS Mac Van Valkenburg award.

Lucas Cavigelli received the M.Sc. degree in electrical engineering and information technology from ETH Zürich, Zurich, Switzerland, in 2014. Since then he has been with the Integrated Systems Laboratory, ETH Zurich, where he is pursuing a PhD degree. His current research interests include deep learning, computer vision, embedded systems, and low-power integrated circuit design. He has received the best paper award at the VLSI-Soc and the ICDSC conferences in 2013 and 2017 and the best student paper award at the Security+Defense conference in 2016. Manuel Le Gallo is a Post-Doctoral researcher at IBM Research - Zurich, where he is currently employed in the Memory and Cognitive Technologies group. His main research interest is in using phase-change memory devices for non-von Neumann computing. Manuel holds a doctoral degree in Electrical Engineering (DrSc) from ETH Zürich (2017), a Master’s degree in Electrical Engineering and Information Technology (MSc) from ETH Zürich (2014), an undergraduate degree of Cycle Ingénieur Polytechnicien from École Polytechnique Palaiseau, France (2014), as well as a Bachelor’s degree in Engineering Physics (BEng) from École Polytechnique de Montréal, Canada (2011).

Timoleon Moraitis is a researcher at IBM Research – Zurich, Switzerland, currently working on biologically-inspired machine learning algorithms such as spiking neural networks and their physical implementation through hardware emulation. His research explores which neurosynaptic mechanisms can enable the next generation of cognitive machines. Previously he transitioned from the experimental and computational neuroscience of the rat’s and human’s sensory-motor system to neuromorphic engineering, during his PhD at the Institute of Neuroinformatics (NI) in Zurich. He received his diploma in applied mathematics and physics from the National Technical Univ. of Athens, Greece.

Speakers:
Luca Benini - ETH Zurich & Univ. of Bologna
Lucas Cavigelli - ETH Zurich
Timoleon Moraitis - IBM Research
Manuel Le Gallo - IBM Research

Tutorial 2 - Spectrum of Run-time Management for Modern and Next Generation Multi/Many-core Systems

Time: 9:00 - 13:00 | **Room:** Einaudi

Organizers:
Amit Kumar Singh - Univ. of Essex
Geoff V. Merrett - Univ. of Southampton
Akash Kumar - Technische Univ. Dresden
Amir Rahmani - Univ. of California, Irvine

Run-time management of multi/many-core systems is becoming extremely challenging due to several factors, e.g. increasing demand to execute concurrent applications, inefficient exploitation of heterogeneous cores, changing workloads and scenarios and desire for optimization of several metrics such as performance, energy and reliability. For next generation multi/many-core systems, the challenges will further increase mainly due to higher number of cores and increased heterogeneity.

This tutorial starts with a taxonomy of run-time management approaches, providing an overview of the field and comparing approaches. The attention then shifts to focus on a range of run-time power and energy management approaches. Thereafter, approaches considering reliability as their primarily optimization goal will be addressed. Finally, run-time management approaches that leverage multiple-input, multiple-output and supervisory control theory to offer scalable, autonomous, and coordinated resource management will be covered. Depending upon the target problems, the designers can employ these methodologies to achieve efficiency in multi/many-core systems in terms of performance, energy consumption and/or reliability.

BIOGRAPHIES:
Amit Kumar Singh is a Lecturer (Assistant Professor) at Univ. of Essex, UK. Previously, he worked as a post-doctoral researcher at Univ. of Southampton, UK from 2016 to 2017, at Univ. of York, UK from 2014 to 2016 and National Univ. of Singapore (NUS) from 2013 to 2014. He received the Ph.D. degree from Nanyang Technological Univ. (NTU), Singapore, in 2013. His current research interests include system level design-time and run-time optimizations of 2D and 3D multi-core systems with focus on performance, energy, temperature, and reliability.

Geoff V. Merrett is an Associate Professor at Univ. of Southampton, where he is head of the Centre for Internet of Things and Perasive Systems. He received the PhD degree in Electronic Engineering from Southampton in 2009. He is internationally known for his research into the system-level energy management of mobile and self-powered embedded systems. He is currently a Co-Investigator on over £20M of UK-government-funded projects, for example ‘PRIME’ on energy-efficient many-core computing systems. He is technical director of the Arm-ECS Research Centre, an award winning industry-academia collaboration between the Univ. of Southampton and ARM.

Akash Kumar is a Professor at Technische Universitat Dresden (TUD), Germany, where he is directing the chair for Processor Design. From 2009 to 2015, he was with the Department of Electrical and Computer Engineering, NUS. He received the joint Ph.D. degree in electrical engineering in embedded systems from Univ. of Technology (TUe), Eindhoven and National Univ. of Singapore (NUS), in 2009. His current research interests include design, analysis, and resource management of low-power and fault-tolerant embedded multiprocessor systems.

Amir M. Rahmani is currently Marie Curie Global Fellow at Univ. of California Irvine (USA) and TU Wien (Austria). He is also an adjunct professor (Docent) in embedded parallel and distributed computing at the Univ. of Turku, Finland. He received the Ph.D. degree from Department of IT, Univ. of Turku, Finland, in 2012. He also received his MBA jointly from Turku School of Economics and European Institute of Innovation & Technology (EIT) ICT Labs, in 2014. His research interests span Self-Aware Computing, Energy-efficient Many-core Systems, Runtime Resource Management, Healthcare Internet of Things, and Fog/Edge Computing.

Speakers:
Amit Kumar Singh - Univ. of Essex
Geoff V. Merrett - Univ. of Southampton
Akash Kumar - Technische Univ. Dresden
Amir Rahmani - Univ. of California, Irvine
Tutorial 3 - Schedulability Analysis Under Uncertainty Using Formal Methods
Time: 9:00 - 18:00 | Room: Sella

Organizers:
- Étienne André - Univ. Paris 13
- Giuseppe Lipari - Univ. Lille

Modern real-time systems must cope with different sources of variability. Modern hardware processors introduce several sources of variability in the execution time of the software (cache, pipeline, bus contention, etc.); and the timing of external events may change due to changes in the environments, malfunctions, etc. This variability adds additional challenges for the design, development and validation of modern cyber-physical systems. It is then necessary to estimate the robustness of the system w.r.t. variations of the parameters. A key issue is to estimate for which values of the parameters the system continues to meet all its timing constraints.

In this tutorial, we present the background for analyzing real-time systems using formal methods, and notably the formalism of parametric timed automata to analyze real-time scheduling under uncertainty. Then we will give a survey of some real-time scheduling problems, and we will show how to model a typical real-time system using the IMITATOR tool. The participants will be guided toward building and verifying a model of a real-time system, exploring the capability of the analysis tool.

BIOGRAPHIES:
Étienne André is an associate professor with Université Paris 13, France. His research interests include model checking real-time systems, notably in the presence of timing uncertainty, or unknown constants. He contributed to the field of parametric timed automata, and is the lead developer of IMITATOR, a state-of-the-art parametric model checker, applied in several industrial contexts (including ST-microelectronics, Astrium Space State Space transportation, and Thales).

Giuseppe Lipari is Professor of Computer Science at Univ. of Lille. He is head of the Embedded Real-Time Adaptive System Design and Execution (Emeraude) team of the Centre de Recherche en Informatique, Signal et Automatique (CRIStAL) de Lille. His research interests are in real-time systems, real-time operating systems, scheduling algorithms, embedded systems. He is an IEEE Fellow.

Web page: https://lipn.univ-paris13.fr/~andre/

Speakers:
- Étienne André - Univ. Paris 13
- Giuseppe Lipari - Univ. Lille

Tutorial 4 - Kickstarting Developing on seL4, the World’s Most Trustworthy and Difficult to Work With Microkernel
Time: 14:00 - 18:00 | Room: Giolitti

Organizers:
- Anna Lyons - Univ. of New South Wales & Commonwealth Scientific and Industrial Research Organisation
- Gernot Heiser - Univ. of New South Wales & Commonwealth Scientific and Industrial Research Organisation

seL4 is a microkernel offering unprecedented trustworthiness in the form of formal verification of correctness, integrity, isolation and a known WCET. This tutorial will kick-start everything you need to know to start working on seL4 and is in four parts: an introduction to seL4, hands on working with the kernel API and scheduling model, hands on use of rump kernels for basic POSIX support, and a presentation on how to set up Linux VMs with guest to guest communication.

BIOGRAPHIES:
Anna just submitted her PhD at UNSW which completely altered the seL4 scheduling model, offering for the first time a principled model for managing time in L4 kernels. She’s now working as a senior engineer at CSIRO’s Data61 and assisting with UNSW’s Advanced Operating Systems course, which is based on seL4. Anna is interested in microkernel based OSes, trustworthy systems, practical real-time scheduling and teaching systems.

Gernot is Scienta Professor and John Lions Chair at UNSW Sydney, a Chief Research Scientist at CSIRO’s Data61 and a Fellow of the IEEE, the ACM and the Academy of Technology and Engineering (ATSE). UNSW Gernot’s main research interests are in operating systems, especially microkernel-based systems, and their use in critical systems; cyber-security, especially operating-system security; system trustworthiness and robustness; real-time systems; virtualisation; energy/power management and architectural support for operating systems.

Kofi is an engineer at UNSW working with CSIRO’s Data61 on seL4 and the surrounding ecosystem. Kofi cares about coordinating the currently disjoint world of drivers, and unifying the Free and Open Source world and strengthening open-source operating system’s ability to work with hardware vendors to get the drivers they need.

Kent is also an engineer at CSIRO’s Data61. His interests include Systems engineering and how using different operating system architectures can help construct trustworthy applications. He has previously worked on efficient reuse of existing operating system services in alternative operating environments. In the near future he is interested in finding out how better temporal and spatial isolation can be used to build useful mixed-criticality trustworthy systems.

Speakers:
- Gernot Heiser - Univ. of New South Wales & Commonwealth Scientific and Industrial Research Organisation
- Kofi Doku Atuah - Univ. of New South Wales & Commonwealth Scientific and Industrial Research Organisation
- Kent McLeod - Commonwealth Scientific & Industrial Research Organisation
Tutorial 5 - A Comprehensive Analysis of Approximate Computing Techniques: From Component- to Application-Level

Time: 14:00 - 18:00 | **Room:** Einaudi

Organizers:
- Alberto Bosio - Lyon Institute of Nanotechnology
- Daniel Menard - Institut d'Électronique et de Télécommunications de Rennes
- Olivier Sentieys - French Institute for Research in Computer Science and Automation

A new design paradigm, Approximate Computing (AxC), has been established to investigate how computing systems can be more energy efficient, faster, and less complex. Intuitively, instead of performing exact computation and, consequently, requiring a high amount of resources, AxC aims to selectively violate the specifications, trading accuracy off for efficiency. It has been demonstrated in the literature the effectiveness of imprecise computation for both software and hardware components implementing inexact algorithms, showing an inherent resiliency to errors.

This tutorial introduces basic and advanced topics on AxC. We intend to follow a bottom-up approach: from component- up to application-level. More in detail, we will first present the main concept and techniques (e.g., functional approximation, voltage over-scaling). We then move to present some compile-time results in terms of energy-efficiency, area, performance versus accuracy of computations when using customized arithmetic (fixed-point, floating-point) and also try to derive some conclusions by comparing the different paradigms. The algorithmic-level approximation methods are then presented. Energy consumption can be reduced by approximating or skipping part of the computation. The concept of incremental refinement, early termination and fast decision will be detailed.

BIOGRAPHIES:
- Alberto Bosio received the PhD in Computer Engineering from the Politecnico di Torino, Italy in 2006. From 2007 he is an Associate Professor at LIRMM - Univ. of Montpellier in France. His research interests include Approximate Computing, In-Memory Computing, Test and Diagnosis of Digital circuits and systems and Reliability. He co-authored 1 book, 3 patents 35 journals, and over 120 conference papers. He will be the chair of the ETTC from January 2018. He is a member of the IEEE. Web: http://www.lirmm.fr/~bosio/home/
- Daniel Menard received the Ph.D. and HDR degrees in Signal Processing and Telecommunications from the Univ. of Rennes, respectively in 2002 and 2011. From 2003 to 2012 he was Associate Professor at Univ. of Rennes in France. He is currently Full Professor at INSA Rennes. His research activities focus on the energy efficient implementation of signal and image processing applications in embedded systems. His research topics include approximate computing, fixed-point arithmetic, energy optimization in MPSoC, low power HEVC video encoding and decoding and embedded stereo-vision. He has published 25 papers in international journals and 63 papers in international conferences. He is member of the DISPS Technical Committee of the IEEE Signal Processing Society. Web: http://dmenard.perso.insa-rennes.fr
- Olivier Sentieys is a Professor at the Univ. of Rennes and holds an Inria Research Chair on Energy-Efficient Computing Systems. He has more than 20 years of expertise in the fields of system-on-chip architectures, reconfigurable systems and their associated CAD tools, finite arithmetic effects, numerical accuracy analysis and low-power sensor networks. He authored or co-authored more than 150 journal publications or peer-reviewed conference papers and hold 6 patents. In particular, his research on methods for analytical analysis of errors in reduced-precision arithmetic and word-length optimization since 2000 with more than 50 publications, can be considered as a pioneering work in the field of approximate computing. Web: http://people.rennes.inria.fr/Olivier.Sentieys/

Speakers:
- Alberto Bosio - Lyon Institute of Nanotechnology
- Daniel Menard - Institut d'Électronique et de Télécommunications de Rennes
- Olivier Sentieys - French Institute for Research in Computer Science and Automation
MONDAY, OCTOBER 1

SCHEDULE OF EVENTS

<table>
<thead>
<tr>
<th>Cavour</th>
<th>Giolitti</th>
<th>Einaudi</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:15 - 09:00</td>
<td>09:00 - 10:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>ESWEEK Opening Session</td>
<td>Monday Keynote: Thomas Henzinger - Institute of Science and Technology Austria, The First-Order Logic of Signals</td>
<td>Room: Cavour</td>
</tr>
<tr>
<td>10:00 - 10:30</td>
<td>Coffee Break</td>
<td>Room: Foyer 1 & 2</td>
</tr>
<tr>
<td>10:30 - 12:00</td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>Codes+ISSS: High-Level Synthesis</td>
<td>CODES+ISSS: Embedded Learning 1</td>
<td>EMSOFT: Hardware Management</td>
</tr>
<tr>
<td>12:00 - 12:30</td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>12:30 - 14:00</td>
<td>Lunch</td>
<td>Room: Torino Hall</td>
</tr>
<tr>
<td>13:00 - 13:45</td>
<td>F1/10 Tutorial</td>
<td>Room: Sella</td>
</tr>
<tr>
<td>CODES+ISSS: Power-efficient Designs</td>
<td>EMSOFT: Runtime Monitoring and Numerical Stability</td>
<td>ARM Tutorial</td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>SPECIAL SESSION CODES+ISSS: Future Automotive Systems Design: Research Challenges and Opportunities</td>
<td>CODES+ISSS: Resilient Embedded Systems</td>
<td>EMSOFT: Hybrid Systems</td>
</tr>
<tr>
<td>16:00 - 17:30</td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>3rd International F1/10 Autonomous Racing Competition</td>
<td>Room: Torino Hall</td>
<td></td>
</tr>
</tbody>
</table>
Formalizing properties of systems with continuous dynamics is a challenging task. In this paper, we propose a formal framework for specifying and monitoring rich temporal properties of real-valued signals. We introduce signal first-order logic (SFO) as a specification language that combines first-order logic with linear-real arithmetic and unary function symbols interpreted as piecewise-linear signals. We first show that while the satisfiability problem for SFO is undecidable, its membership and monitoring problems are decidable. We develop an offline monitoring procedure for SFO that has polynomial complexity in the size of the input trace and the specification, for a fixed number of quantifiers and function symbols. We show that the algorithm has computation time linear in the size of the input trace for the important fragment of bounded-response specifications interpreted over input traces with finite variability. We can use our results to extend signal temporal logic with first-order quantifiers over space and time parameters, while preserving its efficient monitoring. We finally demonstrate the practical appeal of our logic through a case study in the micro-electronics domain.

BIOGRAPHY:
Thomas A. Henzinger is president of IST Austria (Institute of Science and Technology Austria). He holds a Dipl.-Ing. degree in Computer Science from Kepler Univ. in Linz, Austria, an M.S. degree in Computer and Information Sciences from the Univ. of Delaware, a Ph.D. degree in Computer Science from Stanford Univ. (1991), and a Dr.h.c. from Fourier Univ. in Grenoble, France (2012) and from Masaryk Univ. in Brno, Czech Republic (2013). He was Assistant Professor of Computer Science at Cornell Univ. (1992-95), Assistant Professor (1996-97), Associate Professor (1997-98), and Professor (1998-2004) of Electrical Engineering and Computer Sciences at the Univ. of California, Berkeley. He was also Director at the Max-Planck Institute for Computer Science in Saarbruecken, Germany (1999) and Professor of Computer and Communication Sciences at EPFL in Lausanne, Switzerland (2004-09). His research focuses on modern systems theory, especially models, algorithms, and tools for the design and verification of reliable software, hardware, and embedded systems. His HyTech tool was the first model checker for mixed discrete-continuous systems. He is an ISI highly cited researcher, a member of Academia Europaea, a member of the German Academy of Sciences (Leopoldina), a member of the Austrian Academy of Sciences, a Fellow of the AAAS, a Fellow of the ACM, and a Fellow of the IEEE. He has received the Milner Award of the Royal Society, the Wittgenstein Award of the Austrian Science Fund, and an ERC Advanced Investigator Grant.
MONDAY, OCTOBER 1

Session 1A - CASES: High-Level Synthesis
Time: 10:30 - 12:00 | Room: Cavour

Chair:
Laura Pozzi - Univ. dellla Svizera Italiana

1A.1 MINIMALLY BIASED MULTIPLIERS FOR APPROXIMATE INTEGER AND FLOATING-POINT MULTIPLICATION
Hassaan Saadat - Univ. of New South Wales
Haseeb Bokhari - Open-Access Pty Ltd, Australia
Sri Parameswaran - Univ. of New South Wales

1A.2 HI-DMM: HIGH-PERFORMANCE DYNAMIC MEMORY MANAGEMENT IN HIGH-LEVEL SYNTHESIS
Tingyuan Liang, Jieru Zhao, Liang Feng - Hong Kong Univ. of Science and Technology
Sharad Sinha - Indian Institute of Technology
Wei Zhang - Hong Kong Univ. of Science and Technology

1A.3 SLACKHAMMER: LOGIC SYNTHESIS FOR GRACEFUL ERRORS UNDER FREQUENCY SCALING
Tanfer Alan, Joerg Henkel - Karlsruhe Institute of Technology

Session 1B - CODES+ISSS: Embedded Learning 1
Time: 10:30 - 12:00 | Room: Giolitti

Chair:
Chengmo Yang - Univ. of Delaware
Co-Chair:
Franco Fummi - Univ. of Verona

1B.1 A DESIGN SPACE EXPLORATION FRAMEWORK FOR CONVOLUTIONAL NEURAL NETWORKS IMPLEMENTED ON EDGE DEVICES
Foivos Tsimpourlas, Lazaros Papadopouloas, Anastasios Bartoskas, Dimitrios Soudris - National Technical Univ. of Athens

1B.2 XNOR NEURAL ENGINE: A HARDWARE ACCELERATOR IP FOR 21.6 FLOPS BINARY NEURAL NETWORK INFERENC
Francesco Conti, Pasquale Davide Schiavone, Luca Benini - Eidgenössische Technische Hochschule Zürich & Univ. of Bologna

1B.3 MALOC: A FULLY PIPELINED FPGA ACCELERATOR FOR CONVOLUTIONAL NEURAL NETWORKS WITH ALL LAYERS MAPPED ON CHIP
Lei Gong, Chao Wang, Xi Li, Huaping Chen, Xuehai Zhou - Univ. of Science and Technology of China

Session 1C - EMSOFT: Hardware Management
Time: 10:30 - 12:00 | Room: Einaudi

Chair:
Frank Müller - North Carolina State Univ.

1C.1 BOUNDING DRAM INTERFERENCE IN COTS HETEROGENEOUS MPSoCS FOR MIXED CRITICALITY SYSTEMS
Mohamed Hassan - Univ. of Guelph & Intel Corporation
Rodolfo Pellizzoni - Univ. of Waterloo

1C.2 LIGHTWEIGHT, INTEGRATED DATA DEDUPLICATION FOR WRITE STRESS REDUCTION OF MOBILE FLASH STORAGE
Miao-Chiang Yen, Shih-Yi Chang, Li-Pin Chang - National Chiao Tung Univ.

1C.3 THERMAL-AWARE RESOURCE MANAGEMENT FOR EMBEDDED REAL-TIME SYSTEMS
Youngmoon Lee - Univ. of Michigan
Hoon Sung Chwa - Daejeon Gyeongbuk Institute of Science and Technology
Kang Shin - Univ. of Michigan
Shige Wang - General Motors Research and Development

* Denotes Best Paper Candidate
Session 2A - CASES: Reconfigurable Architectures for Neural Networks
Time: 14:00 - 15:30 | Room: Cavour
Chair: Oliver Bringmann - Univ. of Tübingen

2A.1 GNA: RECONFIGURABLE AND EFFICIENT ARCHITECTURE FOR GENERATIVE NETWORK ACCELERATION
Jiale Yan, Shouyi Yin, Fengbin Tu, Leibo Liu, Shaojun Wei - Tsinghua Univ. & Institute of Microelectronics

2A.2 AUTO-TUNING CNNS FOR COARSE-GRAINED RECONFIGURABLE ARRAY-BASED ACCELERATORS
Inpyo Bae, Barend Harris, Hyemi Min, Bernhard Egger - Seoul National Univ.

2A.3 HETEROGENEOUS FPGA-BASED COST-OPTIMAL DESIGN FOR TIMING-CONSTRAINED CNNS
Weiwen Jiang - Chongqing Univ. & Univ. of Pittsburgh
Edwin H.-M. Sha, Qingfeng Zhuge - East China Normal Univ.
Lei Yang, Xianzhang Chen - Chongqing Univ. & Univ. of California, Irvine
Jingtong Hu - Univ. of Pittsburgh

Session 2B - CODES+ISSS: Power-efficient Designs
Time: 14:00 - 15:30 | Room: Giolitti
Chair: Roman Lysecky - Univ. of Arizona

2B.1 ENERGY-QUALITY-TIME OPTIMIZED TASK MAPPING ON DVFS-ENABLED MULTICORES
Lei Mo - French Institute for Research in Computer Science and Automation
Angeliki Kritikakou, Olivier Sentieys - Univ. of Rennes 1 & INRIA/IRISA

2B.2 ENERGY MANAGEMENT OF APPLICATIONS WITH VARYING RESOURCE USAGE ON SMARTPHONES
Anway Mukherjee, Thidapat Chantem - Virginia Tech

2B.3 DIGITAL FOVEATION: AN ENERGY-AWARE MACHINE VISION FRAMEWORK
Ekdeep S. Lubana - Indian Institute of Technology Roorkee
Robert P. Dick - Univ. of Michigan & Stryd Inc

Session 2C - EMSOFT: Runtime Monitoring and Numerical Stability
Time: 14:00 - 15:30 | Room: Einaudi
Chair: Timothy Bourke - French Institute for Research in Computer Science and Automation

2C.1 AN ALGEBRAIC FRAMEWORK FOR RUNTIME VERIFICATION
Stefan Jakšić - Austrian Institute of Technology & Technische Univ. Wien
Ezio Bartocci, Radu Grosu - Technische Univ. Wien
Dejan Ničković - Austrian Institute of Technology

2C.2 DISCRETE CHOICE IN THE PRESENCE OF NUMERICAL UNCERTAINTIES
Debasmita Lohar, Eva Darulova - Max Planck Institute for Software Systems
Sylvie Putot - LIX, École Polytechnique
Eric Goubault - École Polytechnique

2C.3 WORK-IN-PROGRESS: LIGHTWEIGHT DEADLOCK DETECTION TECHNIQUE FOR EMBEDDED SYSTEMS VIA OS-LEVEL ANALYSIS
Youngjae Choi - Sungkyunkwan Univ. & Samsung Electronics, Visual Display Division
Jaewook Kwon, Seokjae Jeong, Hansub Park - Samsung Electronics, Visual Display Division
Young Ik Eom - Sungkyunkwan Univ.

2C.4 WORK-IN-PROGRESS: INTROSPECTION OF THE LINUX-BASED EMBEDDED FIRMWARES
Pavel Dovgalyuk, Natalia Fursova, Ivan Vasiliev Vladimir Makanov - Novgorod State Univ.

2C.5 WORK-IN-PROGRESS: DESIGN OF SECURITY-CRITICAL DISTRIBUTED REAL-TIME APPLICATIONS WITH FAULT-TOLERANT CONSTRAINT
Weijiang, Haibo Hu, Jinyu Zhan - Univ. of Electronic Science and Technology of China
Ke Jiang - Veonner

2C.6 WORK-IN-PROGRESS: FAST SNAPSHOT MIGRATION USING STATIC CODE INSTRUMENTATION
Jae-Rin Kim, Hyeon-Jae Lee, Soo-Mook Moon - Seoul National Univ.
Automotive systems are currently undergoing a radical shift in the way they are designed, implemented and deployed. Such changes impose an increased complexity and a high number of requirements in order to be more automated, connected, dependable and cost-effective. This raises several challenges that the embedded systems community has to face, encountered at different stages of systems development from modeling and design to software/hardware deployment and validation. This special session will be dedicated to invited speakers from industry to discuss current industrial trends and open problems in the hardware and software design of automotive systems, dictating rigorous constraints in terms of safety, real-time capabilities and security.

3A.1 BREAKING AUTOMOTIVE TRADITIONS ... BUT NOT THE LEGACY CODE
Dirk Ziegenbein - Robert Bosch GmbH

3A.2 THE JOURNEY TOWARDS RECONCILING PERFORMANCE AND PREDICTABILITY
Gurulingesh Raravi - NVIDIA Corp.

Session 3B - CODES+ISSS: Resilient Embedded Systems
Time: 16:00 - 17:30 | Room: Giolitti

3B.1 SYNTHESIS OF MONITORS FOR NETWORKED SYSTEMS WITH HETEROGENEOUS SAFETY REQUIREMENTS
Mischa Möstl, Johannes Schlatow, Rolf Ernst - Technische Univ. Braunschweig

3B.2 TRADING-OFF ACCURACY AND ENERGY OF DEEP INFERENCE ON EMBEDDED SYSTEMS: A CO-DESIGN APPROACH

3B.3 WORK-IN-PROGRESS: COMMUNICATION OPTIMIZATION FOR THERMAL RELIABLE OPTICAL NETWORK-ON-CHIP
Mengquan Li - Chongqing Univ. Weiwen Liu - Nanyang Technological Univ. Lei Yang - Chongqing Univ. Yiyuan Xie - Southwest Univ. Yaoyao Ye - Shanghai Jiao Tong Univ. Nan Guan - Hong Kong Polytechnic Univ.

3B.4 WORK-IN-PROGRESS: INTRODUCING ASSUME-GUARANTEE CONTRACTS FOR VERIFYING ROBOTIC APPLICATIONS
Stefano Spellini - Univ. of Verona Michele Lora, Sudipta Chattopadhyay - Singapore University of Technology and Design & Univ. of Verona Franco Fummi - Univ. of Verona

3B.5 WORK-IN-PROGRESS: DYNAMIC DATA MANAGEMENT FOR AUTOMOTIVE ECUS WITH HYBRID RAM-NVM MEMORY
Jinyu Zhan, Junhuan Yang, Wei Jiang, Yixin Li - Univ. of Electronic Science and Technology of China

3B.6 WORK-IN-PROGRESS: SECURE NON-VOLATILE MEMORY WITH SCRATCH PAD MEMORY USING DUAL ENCRYPTION MODE

3B.7 WORK-IN-PROGRESS: RUNTIME REQUIREMENTS MONITORING FOR STATE-BASED HARDWARE
Minjun Seo, Roman Lysecky - Univ. of Arizona

Denotes Best Paper Candidate
MONDAY, OCTOBER 1

Session 3C - EMSOFT: Hybrid Systems

3C.1 TWO-LAYERED FALSIFICATION OF HYBRID SYSTEMS GUIDED BY MONTE CARLO TREE SEARCH

Zhenya Zhang, Gidon Ernst

- National Institute of Informatics & Graduate Univ. for Advanced Studies
- Univ. of Waterloo
- National Institute of Informatics
- Graduate Univ. for Advanced Studies

3C.2 SAFETY VERIFICATION OF NONLINEAR HYBRID SYSTEMS BASED ON BILINEAR PROGRAMMING

Yifan Zhang - Nanjing Univ.
Zhengfeng Yang - East China Normal Univ.
Huibiao Zhu - East China Normal Univ.
Xin Chen, Xuandong Li - Nanjing Univ.

3C.3 FORMAL FEATURE INTERPRETATION OF HYBRID SYSTEMS

Antonio A. Bruto da Costa - Indian Institute of Technology Kharagpur
Goran Frehse - Univ. of Grenoble & VERIMAG
Pallab Dasgupta - Indian Institute of Technology Kharagpur

Poster Session

Time: 17:30 - 18:00

3rd International F1/10 Autonomous Racing Competition

Time: 17:30 - 18:30 | Room: Torino Hall

Chair:
Marko Bertogna - Univ. of Modena and Reggio Emilia

CO-Chairs:
Madhur Behl - Virginia Polytechnic Institute and State Univ., Rahul Mangharam - Univ. of Pennsylvania

Organizers:
Mathew O. Kelly - Univ. of Pennsylvania,
Varundev Sukhil - Virginia Polytechnic Institute and State Univ.
Paolo Burgio - Univ. of Modena and Reggio Emilia
Houssam Abbas - Univ. of Pennsylvania
Madhur Behl - Virginia Polytechnic Institute and State Univ.
Rahul Mangharam - Univ. of Pennsylvania
Marko Bertogna - Univ. of Modena and Reggio Emilia

F1/10 is an international competition which exposes you to the foundations of perception, planning and control in a fun, and challenging environment. Participating teams race vehicles with similar hardware specification and try to outsmart, and outpace each other in a battle of algorithms. Many former F1/10 race engineers are now employed in Tesla’s AutoPilot group, Nvidia’s DrivePX AV group, Ford’s AV group, among others.

At ESWeek we will have more cars, higher speeds, and some wheel-to-wheel autonomous racing action.
Schedule of Events

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 10:00</td>
<td>Cavour</td>
<td>Tuesday Keynote: Ahmad-Reza Sadeghi</td>
<td>Hitchhiker’s Guide to the IoT Galaxy full of Security & Privacy Challenges (An Attempt)</td>
</tr>
<tr>
<td>10:00 - 10:30</td>
<td></td>
<td>Coffee Break</td>
<td>Room: Foyer 1 & 2</td>
</tr>
<tr>
<td>10:30 - 12:00</td>
<td>Cavour, Giolitti, Einaudi, Sella</td>
<td>CASES: Architectures and Compilers for Real-Time Systems</td>
<td>Room: Cavour</td>
</tr>
<tr>
<td></td>
<td>Giolitti</td>
<td>CODES+ISSS: Embedded Learning 2</td>
<td>Room: Giolitti</td>
</tr>
<tr>
<td></td>
<td>Einaudi</td>
<td>EMSOFT: Automata</td>
<td>Room: Einaudi</td>
</tr>
<tr>
<td></td>
<td>Sella</td>
<td>IoT TRACK: Edge Computing for IoT</td>
<td>Room: Sella</td>
</tr>
<tr>
<td>12:00 - 12:30</td>
<td></td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>12:30 - 14:00</td>
<td></td>
<td>Lunch</td>
<td>Room: Torino Hall</td>
</tr>
<tr>
<td>13:00 - 13:45</td>
<td>Sella</td>
<td>F1/10 Tutorial</td>
<td>Xilinx tutorial</td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>Giolitti</td>
<td>CASES: Neural Network Accelerators</td>
<td>Room: Giolitti</td>
</tr>
<tr>
<td></td>
<td>Einaudi</td>
<td>CODES+ISSS: Flash Memories</td>
<td>Room: Einaudi</td>
</tr>
<tr>
<td></td>
<td>Sella</td>
<td>EMSOFT: Real-Time Scheduling</td>
<td>Room: Sella</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IoT TRACK: Security and Efficiency of IoT Devices</td>
<td>Room: Sella</td>
</tr>
<tr>
<td>15:30 - 16:00</td>
<td></td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>16:00 - 17:30</td>
<td></td>
<td>CASES: Efficient Memory and Storage</td>
<td>Room: Giolitti</td>
</tr>
<tr>
<td></td>
<td>Einaudi</td>
<td>CODES+ISSS: Real-Time Systems</td>
<td>Room: Einaudi</td>
</tr>
<tr>
<td></td>
<td>Sella</td>
<td>EMSOFT: Data Retrieval, Streaming, and Processing</td>
<td>Room: Sella</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPECIAL SESSION IoT TRACK: The Future of IoT Security</td>
<td>Room: Sella</td>
</tr>
<tr>
<td>17:30 - 18:00</td>
<td></td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>19:00 - 21:00</td>
<td></td>
<td>Social Event at Museo Nazionale del Risorgimento Italian</td>
<td></td>
</tr>
</tbody>
</table>
The Internet of things (IoT) is rapidly emerging with the goal to connect the unconnected. Many new device manufacturers are entering the market of internet-connected appliances for smart homes and offices, ranging from motion sensors to virtual voice assistants. However, due to lack of security by design and flawed implementations we are facing significant security and privacy challenges specific to IoT, such as perilous IoT botnet attacks, and novel privacy threats caused by widespread installation of wireless sensors, actuators and smart home appliances even in the private setting of our homes. Unfortunately, standard security measures like properly encrypted communications do not protect against these threats.

The massive scale of the IoT device population and enormous diversity of device hardware, operating systems, software frameworks and manufacturers makes it very difficult to establish standard IoT security and privacy-protecting solutions by simply applying and extending known solutions, neither for per-device security architectures nor for network security measures. In particular, existing intrusion detection techniques seem ineffective to detect compromised IoT devices.

In this talk, we will present our recent work, including industry collaborations, on addressing various security and privacy challenges in the growing IoT landscape. In particular, we focus on approaches for flexible management of devices security association (device pairing) as well as automated device identification and reliable detection of compromised devices based on their inherent communication behavior.

BIOGRAPHY:
Ahmad-Reza Sadeghi is a full professor of Computer Science at the TU Darmstadt, Germany. He is the head of the Systems Security Lab at the Cybersecurity Research Center of TU Darmstadt. Since 2012 he is also the director of the Intel Collaborative Research Institute for Secure Computing and Resilient Autonomous Systems at TU Darmstadt. He holds a Ph.D. in Computer Science from the Univ. of Saarland, Germany. Prior to academia, he worked in R&D of Telecommunications enterprises, amongst others Ericsson Telecommunications. He has been continuously contributing to security and privacy research. For his influential research on Trusted and Trustworthy Computing he received the renowned German “Karl Heinz Beckurts award. This award honors excellent scientific achievements with high impact on industrial innovations in Germany.

He has served as Editor-In-Chief of IEEE Security and Privacy Magazine, on editorial board of ACM Transactions on Information and System Security (TISSEC), and as guest editor of Transactions on Computer-Aided Design (TCAD), special Issue on Hardware Security and Trust. Currently he is serving on the editorial boards of ACM Security and Privacy Books, ACM Transactions on the Internet of Things (TIoT), and ACM Transactions on Design and Automation of Electronic Systems (TODAES).

108.1 PAPER TITLE - KEYNOTE: INTERNET OF THINGS OR THREATS? ON BUILDING TRUST IN IOT
Markus Miettinen, Ahmad-Reza Sadeghi - Technische Univ. Darmstadt
Session 4A - CASES: Architectures and Compilers for Real-Time Systems

Time: 10:30 - 12:00 | **Room:** Cavour

Chair: Andy Pimentel - Univ. of Amsterdam

4A.1 PREDICTABILITY AND PERFORMANCE AWARE REPLACEMENT POLICY PVSAM FOR UNIFIED SHARED CACHES IN REAL-TIME MULTICORES
Mohammad Shihabul Haque, Arvind Easwaran - Nanyang Technological Univ.

4A.2 A FAILURE RECOVERY PROTOCOL FOR SOFTWARE-DEFINED REAL-TIME NETWORKS
Tao Qian, Frank Mueller - North Carolina State Univ.

4A.3 ANALYZING DATA CACHE RELATED PREEMPTION DELAY WITH MULTIPLE PREEMPTIONS
Wei Zhang, Nan Guan - Hong Kong Polytechnic Univ.
Lei Ju - Shandong Univ.
Weichen Liu - Nanyang Technological Univ.

Session 4B - CODES+ISSS: Embedded Learning 2

Time: 10:30 - 12:00 | **Room:** Giolitti

Chair: Mohammad Al Faruque - Univ. of California, Irvine

4B.1 POWER- AND ENDURANCE-AWARE NEURAL NETWORK TRAINING IN NVM-BASED PLATFORMS
Fanrui Meng, Yuan Xue, Chengmo Yang - Univ. of Delaware

4B.2 PRIORITY NEURON: A RESOURCE-AWARE NEURAL NETWORK FOR CYBER-PHYSICAL SYSTEMS
Maral Amir, Tony Givargis - Univ. of California Irvine

4B.3 WEIGHTED QUANTIZATION-REGULARIZATION IN DNNs FOR WEIGHT MEMORY MINIMIZATION TOWARDS HW IMPLEMENTATION
Matthias Wess - Technische Univ. Wien & Siemens AG
Sai Manoj Pudukotai Dinakarrao - George Mason Univ.
Axel Jantsch - Technische Univ. Wien

Session 4C - EMSOFT: Automata

Time: 10:30 - 12:00 | **Room:** Einaudi

Chair: Georgios Fainekos - Arizona State Univ.

4C.1 MOORE-MACHINE FILTERING FOR TIMED AND UNTIMED PATTERN MATCHING
Masaki Waga, Ichiro Hasuo - National Institute of Informatics

4C.2 THE OPACITY OF REAL-TIME AUTOMATA
Lingtai Wang, Naijun Zhan - Institute of Software, Chinese Academy of Sciences

4C.3 WORK-IN-PROGRESS: DESIGN CONCEPT OF A LIGHTWEIGHT RUNTIME ENVIRONMENT FOR ROBOT SOFTWARE COMPONENTS ONTO EMBEDDED DEVICES
Hideki Takase, Tomoya Mori, Kazuyoshi Takagi, Naofumi Takagi - Kyoto Univ.

4C.4 WORK-IN-PROGRESS: HIERARCHICAL CONTROL OF A CATOPTRIC SURFACE
Roger D. Chamberlain, Chandler Ahrens, Christopher Gill, Scott A. Mitchell - Washington Univ.

4C.5 WORK-IN-PROGRESS: ROAD CONTEXT-AWARE INTRUSION DETECTION SYSTEM FOR AUTONOMOUS CARS
Tanya Srivastava, Priyanshu Arora - Birla Institute of Technology & Science
Chundong Wang, Sudipta Chattopadhyay - Singapore Univ. of Technology and Design

4C.6 WORK-IN-PROGRESS: TOWARDS OPTIMAL SCHEDULING OF THERMAL COMFORTABILITY AND SMOOTHENING OF LOAD PROFILE IN ENERGY EFFICIENT BUILDINGS
Nilotpal Chakraborty, Arjit Mondal, Samrat Mondal - Indian Institute of Technology Patna

Session 4D - IoT: Edge Computing for IoT

Time: 10:30 - 12:00 | **Room:** Stella

Chair: Chenyang Lu, Washington Univ.

4D.1 DEEPTHINGS: DISTRIBUTED ADAPTIVE DEEP LEARNING INFERENCE ON RESOURCE-CONSTRAINED IOT EDGE CLUSTERS
Zhusuan Zhao, Kamyar Mirzazad Barjough, Andreas Gerstlauer - Univ. of Texas at Austin

4D.2 HOT-SPOT SUPPRESSION FOR RESOURCE-CONSTRAINED IMAGE RECOGNITION DEVICES WITH NON-VOLATILE MEMORY
Chun-Feng Wu - National Taiwan Univ. & Academia Sinica
Ming-Chang Yang - The Chinese Univ. of Hong Kong
Yuan-Hao Chang - Academia Sinica
Tei-Wei Kuo - Academia Sinica & National Taiwan Univ.

4D.3 WORK-IN-PROGRESS: FOG COMPUTING FOR ADAPTIVE HUMAN-ROBOT COLLABORATION
Václav Struhár, Alessandro Vittorio Papadopoulos, Moris Behnam - Mälardalen Univ.

4D.4 WORK-IN-PROGRESS: HIERARCHICAL ENSEMBLE LEARNING FOR RESOURCE-AWARE FPGA COMPUTING
Honglei Wang, Jianwen Li, Kun He, Wenjie Cai - Huazhong Univ. of Science & Technology

* Denotes Best Paper Candidate
TUESDAY, OCTOBER 2

Poster Session
Time: 12:00 - 12:30

Session 5A - CASES: Neural Network Accelerators
Time: 14:00-15:30 | Room: Cavour

* Chair:
 Bernhard Egger - Seoul National Univ.

5A.1 DEEPTRAIN: A PROGRAMMABLE EMBEDDED PLATFORM FOR TRAINING DEEP NEURAL NETWORKS
Duckhwan Kim, Taesik Na, Sudhakar Yalamanchili, Saibal Mukhopadhyay - Georgia Institute of Technology

5A.2 APPROXIMATE COMPUTING FOR LONG SHORT TERM MEMORY (LSTM) NEURAL NETWORKS
Sanchari Sen, Anand Raghunathan - Purdue Univ.

5A.3 GRADIENT DESCENT USING STOCHASTIC CIRCUITS FOR EFFICIENT TRAINING OF LEARNING MACHINES
Sheng Liu, Honglan Jiang - Univ. of Alberta
Leibo Liu - Tsinghua Univ.
Jie Han - Univ. of Alberta

Session 5B - CODES+ISSS: Flash Memories
Time: 14:00-15:30 | Room: Giolitti

5B.1 WARD: WEAR AWARE RAID DESIGN WITHIN SSDS
Shunzhuo Wang, Fei Wu, Jiaona Zhou - Huazhong Univ. of Science & Technology
Zhonghai Lu - KTH Royal Institute of Technology
Changsheng Xie - Huazhong Univ. of Science and Technology

5B.2 NVM-BASED FPGA BLOCK RAM WITH ADAPTIVE SLC-MLC CONVERSION
Lei Ju, Xiaojin Sui, Shiqing Li, Mengying Zhao - Shandong Univ.
Chun Jason Xue - City Univ. of Hong Kong
Jingtong Hu - Univ. of Pittsburgh
Zhiping Jia - Shandong Univ.

5B.3 SCRUBBING-AWARE SECURE DELETION FOR 3D NAND FLASH
Wei-Chen Wang - Macronix International Co., Ltd. & National Taiwan Univ.
Chien-Chung Ho - National Chung Cheng Univ.
Yuan-Hao Chang - Academia Sinica
Tei-Wei Kuo - National Taiwan Univ.
Ping-Hsien Lin - Macronix International Co., Ltd.

Session 5C - EMSOFT: Real-Time Scheduling
Time: 14:00-15:30 | Room: Einaudi

5C.1 EDF-VD SCHEDULING OF FLEXIBLE MIXED-CRITICITY SYSTEM WITH MULTIPLE-SHOT TRANSITIONS
Gang Chen - Northeastern Univ.
Nan Guan - The Hong Kong Polytechnic Univ.
Biao Hu - Beijing Univ. of Chemical Technology
Wang Yi - Uppsala Univ.

5C.2 A CAPACITY AUGMENTATION BOUND FOR REAL-TIME CONSTRAINED-DATADELINE PARALLEL TASKS UNDER GEDF
Jinghao Sun - Northeastern Univ.
Nan Guan - The Hong Kong Polytechnic University & Univ. of Hong Kong
Xu Jiang - The Hong Kong Polytechnic Univ. Shuangshuang Chang - Northeastern Univ.
Zhishan Guo - Missouri Univ. of Science and Technology
Qingxu Deng - Northeastern Univ.
Wang Yi - Uppsala Univ.

* Denotes Best Paper Candidate
Session 5D - IoT: Security and Efficiency of IoT Devices
Time: 14:00-15:30 | Room: Stella

Chair:
Andreas Gerstlauer - Univ. of Texas at Austin

5D.1 ASSURED: ARCHITECTURE FOR SECURE SOFTWARE UPDATE OF REALISTIC EMBEDDED DEVICES
N. Asokan, Thomas Nyman - Aalto Univ. & Trustonic
Norrathep Rattanavipanon - Univ. of California, Irvine
Ahmad-Reza Sadeghi - Technische Univ. Darmstadt
Gene Tsudik - Univ. of California, Irvine

5D.2 ENZYME: AN ENERGY EFFICIENT TRANSIENT COMPUTING PARADIGM FOR ULTRA-LOW SELF-Powered IOT EDGE DEVICES
Chen Pan, Mimi Xie, Jingtong Hu - Univ. of Pittsburgh

5D.3 WORK-IN-PROGRESS: ENHANCED RESILIENT SENSOR ATTACK DETECTION USING FUSION INTERVAL AND MEASUREMENT HISTORY
Kang Yang, Rui Wang - Capital Normal Univ.
Yu Jiang - Tsinghua Univ.
Chenhia Luo, Yong Guan, Xiaojian Li, Zhiping Shi - Capital Normal Univ.

5D.4 WORK-IN-PROGRESS: A CHIP-LEVEL SECURITY FRAMEWORK FOR ASSESSING SENSOR DATA INTEGRITY
Taimour Wehbe, Vincent Mooney, David Keezer - Georgia Institute of Technology

5D.5 WORK-IN-PROGRESS: VERTICAL THINGS - A LANGUAGE-BASED MICROKERNEL FOR CONSTRAINED IOT DEVICES
Jayaraj Poroor - Amrita Vishwa Vidyapeetham

Poster Session
Time: 15:30-16:00

Session 6A - CASES: Efficient Memory and Storage
Time: 16:00-17:30 | Room: Cavour

Chair:
Lars Bauer - Karlsruhe Institute of Technology

6A.1 EXTENDING FLASH LIFETIME IN EMBEDDED PROCESSORS BY EXPANDING ANALOG CHOICE
Georgios Mappouras - Duke Univ.
Ali Reza Yahid - Univ. of Colorado, Denver
Robert Calderbank, Daniel J. Sorin - Duke Univ.

6A.2 MCDRAM: LOW LATENCY AND ENERGY-EFFICIENT MATRIX COMPUTATIONS IN DRAM
Hyunsung Shin - Samsung Electronics Co., Ltd.
Dongyoung Kim, Eunhyeok Park - Seoul National Univ.
Sungba Park, Yonguk Park - Samsung Electronics
Sungjoo Yoo - Seoul National Univ.

6A.3 WORK-IN-PROGRESS: MAXIMIZING I/O THROUGHPUT AND MINIMIZING PERFORMANCE VARIATION VIA REINFORCEMENT LEARNING BASED I/O MERGING FOR SSDS
Wu Chan, Cheng Ji, Qiao Li, Chencheng Fu, Chun Jason Xue, Chencheng Fu - City Univ. of Hong Kong

6A.4 WORK-IN-PROGRESS: PERSISTENCE IMPROVEMENT FOR DISTRIBUTED CACHE WITH NVM BASED STORAGE SYSTEM
Junlong Wang, Wei Jiang, Jinyu Zhan - Univ. of Electronic Science and Technology of China
Jinhuan Yu - City Univ. of Hong Kong
Haibo Hu, Liugen Xu - Univ. of Electronic Science and Technology of China

6A.5 WORK-IN-PROGRESS: MULTIPLE ALIGNMENT OF PACKET SEQUENCES FOR EFFICIENT COMMUNICATION IN A MANY-CORE NEUROMORPHIC SYSTEM
Gianvito Urgese, Luca Ansaloni, Laura Pozzi - Univ. della Svizzera Italiana
Ilaria Scarabottolo, Giovanni Ansaldi, Laura Pozzi - Univ. della Svizzera Italiana

Session 6B - CODES+ISSS: Real-Time Systems
Time: 16:00-17:30 | Room: Gollietti

Chair:
Jason Xue - City Univ. of Hong Kong

6B.1 RESOURCE OPTIMIZATION FOR REAL-TIME STREAMING APPLICATIONS USING TASK REPLICACTION
Sobhan Niknam, Peng Wang, Todor Stefanov - Leiden Univ.

6B.2 EOMESH: COMBINED FLOW BALANCING AND DETERMINISTIC ROUTING FOR REDUCED WFC ESTIMATES IN EMBEDDED REAL-TIME SYSTEMS
Jordi Cardona, Carlles Hernandez, Jaume Abella, Francisco J. Cazorla - Barcelona Supercomputing Center

6B.3 WORK-IN-PROGRESS: HARDWARE IMPLEMENTATION OF A MULTIMODE-AWARE MIXED-CRITICALITY SCHEDULER
Sera Houspounou, Ashwarya Vasa - Southern Illinois Univ. Carbondale
Harini Ramaprasad - Univ. of North Carolina

6B.4 WORK-IN-PROGRESS: CO-DESIGN OF SECURITY-CRITICAL REAL-TIME SYSTEMS TO PREVENT FAULT INJECTION ATTACKS
Ke Jiang - Univesr

6B.5 WORK-IN-PROGRESS: REVISITING WEAR LEVELING DESIGN ON COMPRESSION APPLIED 3D NAND FLASH MEMORY
Yanjun Zou, Liang Shu, Chongming Gao - Beijing Normal Univ.
Qiao Li, Jason Xue - City Univ. of Hong Kong

6B.6 WORK-IN-PROGRESS: EQUIVALENCE OF TRANSFORMATIONS OF SYNCHRONOUS DATA FLOW GRAPHS
Xue-Yang Zhu - Institute of Software, Chinese Academy of Sciences

6B.7 WORK-IN-PROGRESS: QUANTIZED NNS AS THE DEFINITIVE SOLUTION FOR INFERENCE ON LOW-POWER ARM MCUS?
Manuele Russo, Matteo Capotondi, Francesco Conti, Luca Benini - Univ. of Bologna & Swiss Federal Institute of Technology

* Denotes Best Paper Candidate
Session 6C - EMSOFT: Data Retrieval, Streaming, and Processing

Time: 16:00-17:30 | Room: Einaudi

Chair: Houssam Abbas - Oregon State Univ.

*6C.1 REAL-TIME DATA RETRIEVAL WITH MULTIPLE AVAILABILITY INTERVALS IN CPS UNDER FRESHNESS CONSTRAINTS
Chenchen Fu - City Univ. of Hong Kong
Peng Wu - Univ. of Connecticut
Minming Li, Jason Xue - City Univ. of Hong Kong
Yingchao Zhao - Cantas Institute of Higher Education
Song Han - Univ. of Connecticut

* Denotes Best Paper Candidate

6C.2 OPTIMIZING GRAPH ALGORITHMS IN ASYMMETRIC MULTICORE PROCESSORS
Jyothi Krishna V S, Rupesh Nasre - Indian Institute of Technology Madras

6C.3 MODELING, ANALYSIS, AND HARD REAL-TIME SCHEDULING OF ADAPTIVE STREAMING APPLICATIONS
Jiali Teddy Zhai, Sobhan Niknam, Todor Stefanov - Leiden Univ.

Session 6D Special Session: IoT: The Future of IoT Security

Time: 16:00-17:30 | Room: Stella

Chair: Sibin Mohan - Univ. of Illinois at Urbana-Champaign

Organizer: Sibin Mohan - Univ. of Illinois at Urbana-Champaign

The Internet-of-Things (IoT) is a large and complex domain. These systems are often constructed using a very diverse set of hardware, software and protocols. This, combined with the ever increasing number of IoT solutions/services that are rushed to market means that most such systems are rife with security holes. Recent incidents (eg. the Mirai botnet) further highlight such security issues.

With emerging technologies such as blockchain and software-defined networks (SDNs), new security solutions are possible in the IoT domain. In this paper we will explore future trends in IoT security: (a) the use of blockchains in IoT security, (b) data provenance for sensor information, (c) reliable and secure transport mechanisms using SDNs, (d) scalable authentication and remote attestation mechanisms for IoT devices and (e) threat modeling and risk/maturity assessment frameworks for the domain.

6D.1 BLOCKCHAINS FOR IOT SECURITY
Mikael Asplund - Linköping Univ.

6D.2 TRUSTWORTHY SENSOR DATA
Gedare Bloom - Howard Univ.

6D.3 SCALABLE AUTHENTICATION FOR IOT DEVICES
Negin Salajageh - Visa Research

6D.4 REMOTE ATTESTATION FOR IOT DEVICES
Ahmad-Reza Sadeghi - Technische Univ. Darmstadt

6D.5 THREAT, RISK AND MATURITY ASSESSMENT FRAMEWORK FOR IOT
Bruno Sinopoli - Carnegie Mellon Univ.

6D.6 PAPER TITLE - SPECIAL SESSION: THE FUTURE OF IOT SECURITY
Sibin Mohan - Univ. of Illinois at Urbana-Champaign
Mikael Asplund - Linköping Univ.
Gedare Bloom - Howard Univ.
Ahmad-Reza Sadeghi, Ahmad Ibrahim - Technische Univ. Darmstadt
Negin Salajageh - Visa Research

Poster Session

Time: 17:00 - 17:30

Social Event at Museo Nazionale del Risorgimento Italiano

Time: 19:00 - 21:00

* Denotes Best Paper Candidate
WEDNESDAY, OCTOBER 3

SPECIAL EVENTS

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 09:00-10:00 | **Wednesday Keynote:** Jie Liu - Microsoft Research: Outside-In Autonomous Systems
 Room: Cavour |
| 10:00-10:30 | **Coffee Break**
 Room: Foyer 1 & 2 |
| 10:30-12:00 | **CASES:** Embedded Systems Security
 CODES+ISSS: Embedded System Design Tools
 EMSOFT: Autonomous Systems
 EMSOFT: Embedded Software for Robotics: Challenges and Future Directions |
| 12:00-12:30 | **Poster Session** |
| 12:30-14:00 | **Lunch**
 Room: Torino Hall |
| 12:30-14:00 | **Women in ESWeek meeting**
 Room: Sala Stampa |
| 13:00-13:45 | **F1/10 Tutorial Lunch**
 Room: Sella |
| 14:00-15:30 | **CASES:** Cache Memory Management
 Special Session Codes+ISSS: Design and Deployment of Advanced Driver Assistance Systems in Ground Vehicles
 EMSOFT: Verification |
| 15:30-16:00 | **Poster Session** |
| 16:00-17:30 | **Special Session Codes+ISSS:** Towards Secure Computer Architecture: Understanding Security Vulnerabilities and Emerging Attacks for Better Defenses
 Codes+ISSS: Embedded Accelerators
 EMSOFT: End-to-End Latency |
| 17:30-18:00 | **Poster Session** |
| 18:00-18:15 | **Best Paper Awards Ceremony** |
| 18:15-19:45 | **Panel: Future of CPS: Here to stay or another fad?**
 Room: Cavour |
Breakthroughs in device intelligence promise autonomous systems that can achieve human level fidelity interacting with the physical world. While much attention has been focused on inside-out autonomous systems, such as self-driving cars, AR goggles, and robots, which must cope with complex environments using primarily onboard sensing and computing capabilities, we argue the importance of its dual. Outside-in autonomous systems (OIAS) create smart environments that observe and understand space, people, and things from bird’s eye points of view. In OIAS, people do not need to wear extra devices or to change their natural behaviors. Retail stores, factory floors, hospitals, and classrooms can all be augmented with various degrees of outside-in autonomy for better efficiency, higher productivity, and less mistakes.

We will discuss a few techniques, primarily on computer vision and sensor fusion, for building OIAS. These include people identification, people tracking, object identification, and activity recognition. We use autonomous retail stores as an example to illustrate current technology landscape and challenges of bringing lab-proven technologies to the real world. Due to their distributed, multi-modality and real-time nature, calibration, coordination and acceleration become keys for system scalability. Although fully autonomous systems still have a long way to go, technologies developed towards it can bring progressive values to live.

BIOGRAPHY:
Dr. Jie Liu is a Partner Research Manager and the GM of the Ambient Intelligent Team at Microsoft AI Perception and Mixed Reality. He is an IEEE Fellow, an ACM Distinguished Scientist and an ACM Distinguished Speaker. His research interests root in sensing and interacting with the physical world through computing. Examples include time, location, and energy awareness, and Internet/Intelligence of Things. He has published broadly in areas such as sensor networks, embedded systems, mobile and ubiquitous computing, and data center management, and has received 6 best paper awards in top academic conferences. In addition, he holds more than 100 patents. He is an Associate Editor of ACM Trans. on Sensor Networks; was an Associate Editor of IEEE Trans. on Mobile Computing; and has chaired a number of top-tier conferences and their steering committees, including CPS Week, IPSN, and SenSys. He obtained his Ph.D. degree from Electrical Engineering and Computer Sciences, UC Berkeley in 2001, and his Master and Bachelor’s degrees from Department of Automation, Tsinghua Univ., Beijing, China. From 2001 to 2004, he was a research scientist in Palo Alto Research Center (formerly Xerox PARC).
WEDNESDAY, OCTOBER 3

Session 7A - CASES: Embedded Systems Security
Time: 10:30 - 12:00 | Room: Cavour

Chair: Ramesh Karri - New York Univ.

7A.1 FREQUENCY SCALING AS A SECURITY THREAT ON MULTICORE SYSTEMS
Philipp Miedl, Xiaoxi He, Matthias Meyer - Eidgenössische Technische Hochschule Zürich
Davide Basilio Bartolini - Oracle Labs
Lothar Thiele - Eidgenössische Technische Hochschule Zürich

7A.2 GARUDA: DESIGNING ENERGY-EFFICIENT HARDWARE MONITORS FROM HIGH-LEVEL POLICIES FOR SECURE INFORMATION FLOW
Seaghan Sefton, Taiman Siddiqui, Nathaniel St. Amour, Gordon Stewart, Avinash Kodi - Ohio Univ.

7A.3 WORK IN PROGRESS: AN CONFIDENTIALITY AND INTEGRITY SCHEME FOR THE DISTRIBUTED SHARED MEMORY OF EMBEDDED MULTI-CORE SYSTEM
Pengfei Yang, Quan Wang, Xiaokun Huang, Xin Mi - XiDian Univ.

7A.4 WORK-IN-PROGRESS: GEMS: A GENERATOR FOR MODULO SCHEDULING PROBLEMS
Philipp Miedl, Xiaoxi He, Matthias Meyer - Eidgenössische Technische Hochschule Zürich
Davide Basilio Bartolini - Oracle Labs
Lothar Thiele - Eidgenössische Technische Hochschule Zürich

Session 7B - CODES+ISSS: Embedded System Design Tools
Time: 10:30 - 12:00 | Room: Giolitti

Chairs: Andy Pimentel - Univ. of Amsterdam,
Daniel Muller Gritschneder - Technische Univ. München

7B.1 FORMAL MODELING AND VERIFICATION OF CONTROLLERS FOR A FAMILY OF DRAM CACHES
Debiprasanna Sahoo, Swaraj Sha, Manoranjan Satpathy - Indian Institute of Technology Bhubaneswar
Madhu Mutyam - Indian Institute of Technology Madras
Ramesh S - General Motors Research and Development
Partha Roop - Univ. of Auckland

7B.2 SYNTHESIZABLE HIGHER-ORDER FUNCTIONS FOR C++
Dustin Richmond, Ryan Kastner, Alric Althoff - Univ. of California San Diego

7B.3 PARAMETRIC CRITICAL PATH ANALYSIS FOR EVENT NETWORKS WITH MINIMAL AND MAXIMAL TIME LAGS
Joost van Pinxten, Marc Geilen - Eindhoven Univ. of Technology
Twan Basten - Eindhoven Univ. of Technology

Session 7C - EMSOFT: Autonomous Systems
Time: 10:30 - 12:00 | Room: Einaudi

Chair: Bai Xue - Chinese Academy of Sciences

7C.1 USING CONTROL SYNTHESIS TO GENERATE CORNER CASES: A CASE STUDY ON AUTONOMOUS DRIVING
Glen Chou, Yunus Sahin, Liren Yang, Kweisi Rutledge - Univ. of Michigan
Petter Nilsson - California Institute of Technology
Necmiye Ozay - Univ. of Michigan

7C.2 END-TO-END ANALYSIS AND DESIGN OF A DRONE FLIGHT CONTROLLER
Zhaoqun Cheng, Richard West, Craig Einstein - Boston Univ.

7C.3 SEMO: SERVICE-ORIENTED AND MODEL-BASED SOFTWARE FRAMEWORK FOR COOPERATING ROBOTS
Yiyesun Hong - Seoul National Univ.
Hanwoong Jung - Samsung Electronics
KangKyu Park, Soonhoi Ha - Seoul National Univ.
Robots on the factory floor, on the streets, and in our homes, are being given increasing levels of autonomy. They inhabit the same physical environment as their human operators and users, and must perform high-level cognitive tasks. These autonomous robots could enable autonomous transportation, autonomous medical devices and autonomous personal assistants. However, the complexity of their embedded software raises several challenges of guaranteeing safety, efficiency, and resiliency in accomplishing their high-level tasks. This special session highlights the challenges of the design and verification of embedded software for robotics. The presenters will address issues of control synthesis, adversarial testing, formal verification and efficient implementations of neural network code, and HW/SW real-time platforms for autonomous driving.

7D.1 THE ANTLAB SYSTEM FOR PROGRAMMING MULTI-ROBOT SYSTEMS
Rupak Majumdar - MPI-INF

7D.2 SIMULATION-BASED ADVERSARIAL TEST GENERATION FOR EMBEDDED SOFTWARE IN AUTONOMOUS VEHICLES
Georgios Fainekos - Arizona State Univ.

7D.3 ENERGY-EFFICIENT IMPLEMENTATIONS AND HARDWARE ACCELERATIONS OF NEURAL NETWORKS
Rajesh Gupta - Univ. of California

7D.4 SMT AND MILP VERIFICATION OF FEED FORWARD NEURAL NETWORKS
Rüdiger Ehlers - Univ. of Bremen

7D.5 HIGH-PERFORMANCE REAL-TIME PLATFORMS FOR AUTONOMOUS DRIVING SYSTEMS
Marko Bertogna - Univ. of Modena and Reggio Emilia

7D.6 PAPER TITLE - SPECIAL SESSION: EMBEDDED SOFTWARE FOR ROBOTICS: CHALLENGES AND FUTURE DIRECTIONS
Houssam Abbas - Univ. of Pennsylvania
Indranil Saha - Indian Institute of Technology Kanpur
Yasser Shoukry - Univ. of Maryland
Rüdiger Ehlers - Univ. of Bremen
Georgios Fainekos - Arizona State Univ.
Rajesh Gupta - Univ. of California, San Diego
Rupak Majumdar - MPI-INF
Dogan Ulus - Boston Univ.

Poster Session
Time: 12:00 - 12:30
Session 8A - CASES: Cache Memory Management

Time: 14:00-15:30 | Room: Cavour

Chair: Amit Kumar Singh - Univ. of Essex

- **8A.1** CO-SCHEDULING ON FUSED CPU-GPU ARCHITECTURES WITH SHARED LAST LEVEL CACHES
 Marvin Damschen - Karlsruhe Institute of Technology
 Frank Mueller - North Carolina State Univ.
 Joerg Henkel - Karlsruhe Institute of Technology

- **8A.2** SCRATCH THAT (BUT CACHE THIS): A HYBRID REGISTER CACHE / SCRATCHPAD FOR GPUT
 Jonathan Bailey, John Kloosterman, Scott Mahlke - Univ. of Michigan

- **8A.3** WORK-IN-PROGRESS: WRITING-AWARE DATA VARIABLE ALLOCATION ON HYBRID SRAM+NVMM
 Xin Li, Jinyu Zhan, Wei Jiang, Ying Li - Univ. of Electronic Science and Technology of China

- **8A.4** WORK-IN-PROGRESS: DRAM CACHE ACCESS OPTIMIZATION LEVERAGING LINE LOCKING IN TAG CACHE
 Shivani Tripathy, Debiprasanna Sahoo - Indian Institute of Technology Bhubaneswar
 Manoranjan Satpathy - Indian Institute of Technology, Bhubaneswar

- **8A.5** WORK-IN-PROGRESS: TOWARDS AUTOMATIC SCALAR REPLACEMENT IN OPENACC AND OPENMP PROGRAMS FOR GPU
 Rokiatou Diarra, Alain Merigot, Bastien Vincke - Univ. of Paris Sud

- **8A.6** WORK-IN-PROGRESS: EXPLOITING SIMD CAPABILITY IN AN ARMV7-TO-ARMV8 DYNAMIC BINARY TRANSLATOR
 Sheng-Yu Fu, Chih-Min Lin - National Taiwan Univ.
 Ding-Yong Hong - Academia Sinica
 Yu-Ping Liu - National Taiwan Univ.
 Jan-Jan Wu - Academia Sinica
 Wei-Chung Hsu - National Taiwan Univ.

Session 8B Special Session - CODES+ISSS: Design and Deployment of Advanced Driver Assistance Systems in Ground Vehicles

Time: 14:00-15:30 | Room: Giolitti

Organizers:
Houssam Abbas - Univ. of Pennsylvania

An Advanced Driver Assistance System (ADAS) automates various driving functions: from simple cruise control, to fully autonomous driving, via lane-keep assist, automatic emergency braking, highway driving and parking. ADAS present several grand challenges, that span the abstraction layers from hardware all the way up to applications and their incorporation into regulatory standards. The successful development of ADAS and autonomous vehicles requires a conversation between the engineers working at these different layers of abstraction.

- **8B.1** FORMAL VERIFICATION IN ADAS SYSTEMS
 Ramesh S - General Motors Company

- **8B.2** TESTING CLOSED-LOOP SYSTEMS WITH A NEURAL NETWORK
 Jonathan Bailey, John Kloosterman, Scott Mahlke - Univ. of Michigan

- **8B.3** THE DEVELOPMENT OF SAFETY BENCHMARKS FOR ADAS AND AUTONOMOUS VEHICLES
 Rahul Mangharam - Univ. of Pennsylvania

- **8B.4** AUTONOMOUS TRANSPORTATION SYSTEMS
 Adriano Alessandrin - Univ. of Florence

Session 8C - EMSOFT: Verification

Time: 14:00-15:30 | Room: Einaudi

Chair: Tommaso Dreossi - Univ. of California, Berkeley

- **8C.1** AUTOMATIC VERIFICATION OF EMBEDDED SYSTEM CODE MANIPULATING DYNAMIC STRUCTURES STORED IN CONTIGUOUS REGIONS
 Jianghao Liu, Liqian Chen - National Univ. of Defense Technology
 Xavier Rival - École Normale Supérieure & French Institute for Research in Computer Science and Automation

- **8C.2** SYMBOLIC VERIFICATION OF CACHE SIDE-CHANNEL FREEDOM
 Sudipta Chattopadhyay - Singapore Univ. of Technology and Design
 Abhik Roychoudhury - National Univ. of Singapore

- **8C.3** WORK-IN-PROGRESS: RTMUSR: A REAL-TIME TESTBED FOR EMPIRICALLY COMPARING REAL-TIME MULTICORE SCHEDULERS
 Bo Wan, Bo Zhang, Xi Li, Kairi Zhou, Caixu Zhao, Chao Wang, Xuehai Zhou - Univ. of Science and Technology of China

- **8C.4** WORK-IN-PROGRESS: NVIDIA GPU SCHEDULING DETAILS IN VIRTUALIZED ENVIRONMENTS
 Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna - Univ. of Modena and Reggio Emilia

- **8C.5** WORK-IN-PROGRESS: COMMUNICATION-CENTRIC ANALYSIS OF COMPLEX EMBEDDED COMPUTING SYSTEMS
 Uraz Odjur, Hugo Meyer, Simon Polstra - Univ. of Amsterdam
 Evangelos Paradis, Ignacio Gonzalez Alonso - ASML Netherlands B.V.
 Andy D. Pimentel - Univ. of Amsterdam

Time: 16:00-17:30 | Room: Cavour

Chair:
Sai Manoj Pudukotai Dinakarrao - George Mason Univ.
Houman Homayoun - George Mason Univ.

In the recent years, computer architecture design is primarily driven by security, power, and performance. With the recent evolving attacks on the hardware architectures, design for security is becoming one of the primary constraints to be satisfied. The ever increasing and proliferation of computing devices in different domains ranging from smart homes to defense applications further emphasizes the need for secure computing architecture designs. The recent attacks such as Spectre and Meltdown have exploited the vulnerabilities in the existing architectures. This indicates the need to re-evaluate the existing computer architectures not only in terms of power-performance, but also in terms of security and resilience to such attacks. In order to perform design for security, it is non-trivial to primarily understand the existing attacks and the vulnerabilities in the current computing architectures. In this session, the existing works on hardware security such as Intel’s Software Guard Extension (SGX), ARM’s TrustZone, and Physically Uncloneable Functions (PUFs), will be thoroughly reviewed to understand how the vulnerabilities can be mitigated, which will be introduced in the first talk. Despite many efforts on design for security, there still exist vulnerabilities that can be exploited for crafting the attacks on the hardware. As a case study, we consider one of the recent powerful defenses such as Intel’s SGX and show how attacks such as memory corruption can be launched despite having strong defense mechanisms. Towards a lightweight yet powerful defense, the suitability of Hardware Performance Counters (HPCs) for design for security will be discussed in the last talk of the session. HPCs are deployed on the computing architectures for various purposes such as power, performance, and energy management. In the recent days, it has been used for security purposes such as Malware detection. In a similar vein, we discuss the suitability of using the existing HPCs and design of new HPCs for the hardware security. This special session highlights the new challenges and opportunities to design secure computing architectures. The key questions and topics that will be discussed in this session are: How secure are current computing architectures? How are hardware attacks devised based on the current vulnerabilities? How are defenses devised? Are the industrial defense mechanisms really robust? And lastly, does the existing or special type of HPCs be suitable for securing our hardware against attacks such as Spectre, and Meltdown?

9A.1 HARDWARE-ASSISTED SECURITY: FROM TRUST ANCHOR TO MELTDOWN TRUST
Ahmad-Reza Sadeghi - Technische Univ. Darmstadt

9A.2 MEMORY CORRUPTION ATTACKS AGAINST INTEL SGX SHIELDED SOFTWARE
Lucas Davi - Univ. of Duisburg-Essen

9A.3 CAN HARDWARE PERFORMANCE COUNTERS DEFEND ATTACKS SUCH AS MELTDOWN AND SPECTRE?
Houman Homayoun, Sai Manoj Pudukotai Dinakarrao - George Mason Univ.

9A.4 PAPER TITLE - SPECIAL SESSION: ADVANCES AND THROWBACKS IN HARDWARE-ASSISTED SECURITY
Ferdinand Brasser - Technische Univ. Darmstadt
Lucas Davi - Univ. of Duisburg-Essen
Abhijit Dhaville - George Mason Univ.
Tommaso Frassetto - Technische Univ. Darmstadt
Sai Manoj Pudukotai Dinakarrao, Setareh Rafatirad - George Mason Univ.
Ahmad-Reza Sadeghi - Technische Univ. Darmstadt
Avesta Sasan, Hossein Sayadi - George Mason Univ.
Shaza Zeitouni - Technische Univ. Darmstadt
Houman Homayoun - George Mason Univ.

Session 9B - CODES+ISSS: Embedded Accelerators

Time: 16:00-17:30 | Room: Giolitti

Chair:
Kyoungwoo Lee - Yonsei Univ.

9B.1 PAGURUS: LOW-OVERHEAD DYNAMIC INFORMATION FLOW TRACKING ON LOOSELY-COUPLED ACCELERATORS
Luca Piccolboni, Giuseppe Di Guglielmo, Luca Carloni - Columbia Univ.

9B.2 ARCHITECTURE CONSIDERATIONS FOR STOCHASTIC COMPUTING ACCELERATORS
Vincent T. Lee, Armin Alaghi, Rajesh Pamula, Visvesh S. Sathe, Luis Ceze, Mark Oskin - Univ. of Washington

9B.3 WORK-IN-PROGRESS: AMVP - A HIGH PERFORMANCE VIRTUAL PLATFORM USING PARALLEL SYSTEMC FOR MULTICORE ARM ARCHITECTURES
Jan Henrik Weinstock, Röbert Lajos Bücs, Florian Walbroel, Rainer Leupers, Gerd Ascheid - Rheinisch-Westfälische Technische Hochschule Aachen

9B.4 WORK-IN-PROGRESS: FURION: ALLEVIATING OVERHEADS FOR DEEP LEARNING FRAMEWORK ON SINGLE MACHINE
Lihui Jin, Chao Wang, Lei Gong, Chengdong Xu, Yahui Hu, Luchao Tan, Xuehai Zhou - Univ. of Science and Technology of China

9B.5 WORK-IN-PROGRESS: ON LEVERAGING APPROXIMATIONS FOR EXACT SYSTEM-LEVEL DESIGN SPACE EXPLORATION
Kai Neubauer - Univ. of Rostock
Philipp Wanko, Torsten Schaub - Univ. of Potsdam
Christian Haubelt - Univ. of Rostock

9B.6 WORK-IN-PROGRESS: A HIGH-BANDWIDTH SNAPPY DECOMPRESSOR IN RECONFIGURABLE LOGIC
Jian Fang, Jianyu Chen - Delft Univ. of Technology
Harm Peter Hofstee - IBM Research - Austin
Zaid Al-Ars - Delft Univ. of Technology
Jan Hidders - Vrije Univ. Brussels

9B.7 WORK-IN-PROGRESS: WINOONN: OPTIMISING FPGA-BASED NEURAL NETWORK ACCELERATORS USING FAST WINograd ALGORITHM
Xuan Wang, Xuehai Zhou - Univ. of Science and Technology of China
We all know by now that systems with tightly coupled physical and computational elements - where both of them are modeled and analyzed as first class citizens - are referred to as cyber-physical systems (CPS). Developments in CPS over the past 10 years include CPSWeek, a thriving conference dedicated to CPS (ICCPS), an ACM Transactions on CPS, several funding programs both in North America and Europe on CPS, and thousands of research publications on CPS. Many researchers who 10 years ago worked on embedded systems, or control theory, or sensor networks, now claim to be CPS experts. In addition, Computer Scientists in the guise of CPS have now started working on topics like transportation, electricity distribution networks, and building management systems - which previously almost exclusively fell in the domains of civil engineering or power electronics and had apparently no relationship with Computer Science or Computer Engineering.

In spite of these impressive developments, there are several researchers who still believe that CPS is nothing more than another term for embedded systems, or hybrid systems, or sensor networks, that we worked on much before the term CPS became fashionable. This gives rise to several interesting questions:

- Is CPS a research "area"? If so, then is this area defined by a collection of applications? Or did CPS give rise to new theory? There are sessions in ICCPS with papers/talks on three topics that are so disjoint that none of the speakers would understand each other. So what exactly is "CPS" (beyond the definition that we know)?
- How would embedded systems, control theory, sensor networks and other related topics have developed if CPS did not happen? Would we have seen the same results that we have today?
- What is the future of CPS? What should we as researchers do to ensure that CPS has a healthy development in the future? Or will CPS be overtaken by yet another fad?
- What is the opinion of the industry on CPS?
- What is the relationship between CPS and IoT?

The goal of this panel would be to debate on questions like the above, reflect back on how CPS developed and what it holds for the future.

Panelists:
- Insup Lee - Univ. of Pennsylvania
- Giorgio Buttazzo - Scuola Superiore Sant’Anna
- Chenyang Lu - Washington Univ.
- Stavros Tripakis - Aalto Univ.
- Qi Zhu - Northwestern Univ.
- Frank Mueller - North Carolina State Univ.
- Dirk Ziegenbein - Robert Bosch GmbH
WORKSHOP SCHEDULE

THURSDAY

EWiLi’18
Thursday, October 4 | Time: 09:00 - 17:30 | Room: Mollino

HENP’18: International Workshop on Highly Efficient Neural Processing
Thursday, October 4 | Time: 09:00 - 17:30 | Room: Giolitti

INTESA’18
Thursday, October 4 | Time: 09:00 - 17:30 | Room: Sella

THURSDAY & FRIDAY

CyPhy’18: Model-Based Design of Cyber Physical Systems
Thursday, October 4 | Time: 09:00 - 17:30 | Room: Sala Stampa

WESE’18: Embedded and Cyber-Physical Systems Education
Thursday, October 4 | Time: 09:00 - 17:30 | Room: Sala Stampa

SYMPOSIA SCHEDULE

THURSDAY & FRIDAY

NOCS 2018: 12th International Symposium on Networks-on-Chip
Thursday, October 4 - Friday, October 5 | Room: Cavour

RSP Symposium: IEEE International Symposium on Rapid System Prototyping
Thursday, October 4 - Friday, October 5 | Room: Einaudi
THURSDAY, OCTOBER 4

EWiLi 2018
Time: 9:00 - 17:30 | Room: Mollino

Organizers:
- Jalik Boukhobza - Univ. of Western Brittany
- Marco Domenico Santambrogio - Politecnico di Milano
- Frank Singhoff - Univ. of Western Brittany

The EWiLi, the embedded operating system workshop, aims at presenting state-of-the-art research, experimentation, significant and original realizations that focus on the design and implementation of embedded operating systems in both academic and industrial worlds.

International Workshop on Highly Efficient Neural Processing (HENP)
Time: 9:00 - 17:30 | Room: Giolitti

Organizers:
- Yiran Chen - Duke Univ.
- Sungjoon Yoo - Seoul National Univ.

The International Workshop on Highly Efficient Neural Processing is a forum for presentations of state-of-the-art research in highly efficient neural processing. The workshop will combine both oral presentations and posters, which include invited talks from ARM, Google, Facebook, Samsung Electronics, etc.

INTESA Workshop 2018
Time: 9:00 - 17:30 | Room: Sella

The INTESA workshop aims to give an up-to-date picture of intelligent embedded systems architectures and applications with emphasis on Smart IoT and Cyber Physical Systems, including hot topics such as accelerating deep learning. The workshop covers several aspects, from the hardware related ones to embedded software and application issues, being complementary to most of the topic addressed during the ESWEEK. From the market standpoint, scientific progress in this field are considered crucial to fuel a widespread diffusion of the potential benefits offered by the Industry 4.0 perspective. The goal of the event is to create cross-fertilization of ideas between application developers and platform providers with the participation of a mix between academic and industry people.
Model-Based Design of Cyber Physical Systems (CyPhy’18) and Workshop on Embedded and Cyber-Physical Systems Education (WESE’18)

Time: 9:00 - 17:30 | Room: Sala Stampa

CyPhy’18
Cyber physical systems (CPSs) combine computing and networking power with physical components. They enable innovation in a wide range of domains including robotics, smart homes, vehicles, and buildings; medical implants; and future-generation sensor networks. CyPhy’18 brings together researchers and practitioners working on modeling, simulation, and evaluation of CPS, based on a broad interpretation of these areas, to collect and exchange expertise from a diverse set of disciplines. The workshop places particular focus on techniques and components to enable and support virtual prototyping and testing.

General Chair
Walid Taha, Halmstad Univ.

Program Chair
Walid Taha, Halmstad Univ.
Martin Törngren, KTH Royal Institute of Technology

WESE’18
The WESE workshop series aims to bring researchers, educators, and industrial representatives together to assess needs and share design, research, and experiences in embedded and cyber-physical systems education. WESE addresses questions such as “What skills and capabilities are required by the engineers of tomorrow”, “How should the corresponding educational programs be formed”, and “How can effective pedagogic methods be introduced in this domain”?

Chairs
Martin Törngren, KTH Royal Institute of Technology
Martin Edin Grimheden, KTH Royal Institute of Technology
Falk Salewski, Muenster Univ. of Applied Sciences
The International Symposium on Networks-on-Chip (NOCS)

The International Symposium on Networks-on-Chip (NOCS) is the premier event dedicated to interdisciplinary research on on-chip, chip-scale, and multichip package-scale communication technology, architecture, design methods, applications and systems. NOCS brings together scientists and engineers working on NoC innovations and applications from inter-related research communities, including computer architecture, networking, circuits and systems, packaging, embedded systems, co-design, and design automation.

THURSDAY OCTOBER 4, 2017

[09:00-09:10] Opening Ceremony

[09:10-10:10] Keynote 1
Session chair: Paul Bogdan, Univ. of Southern California
Many-Core SoC in Nanoscale CMOS: Challenges & Opportunities
Vivek De, Intel Corporation

[10:30 – 12:35] Regular Paper Session I: Interconnected Multiprocessor
Session chair: Jiang Xu, Hong Kong Univ. of Science and Technology
64 - NoC-Based Support of Heterogeneous Cache-Coherence Models for Accelerators
Davide Giri, Paolo Mantovani and Luca Carloni, Columbia Univ.
73 - Exploration of Memory and Cluster Modes in Directory-Based Many-Core Interconnects
Subodha Charles, Univ. of Florida, Chetan Arvind Patil, Arizona State Univ., Umit Ogras, Arizona State Univ. and Prabhat Mishra, Univ. of Florida
31 - Accurate Congestion Control for RDMA Transfers
Dimitrios Giannopoulos, Evangelos Mageropoulos, Nikolaos Chryssos, Giannis Vardas, Leandros Tzanakis and Manolis Katevenis, Foundation for Research and Technology Hellas
56 - Testing WiNoC-Enabled Multicore Chips with BIST for Wireless Interconnects
Abhishek Vashist, Abhishek Ganguly and Mark Indovina, Rochester Institute of Technology
17 - Towards Energy-efficient High-throughput Photonic NoCs for 2.5D Integrated Systems: A Case for AWGRs
Sebastian Werner, Pouya Fotouhi, Roberto Proietti, Xiao Xian and S.J. Ben Yoo, Univ. of California, Davis)

[12:35 – 14:00] Lunch

[14:00 – 16:05] Regular Paper Session II: Emerging NoC Architecture and Security
Session chair: Luca Carloni, Columbia Univ.
19 (Best paper candidate) - AxDNoC: Low-power Approximate Network-on-Chips using Critical-Path Isolation
Akram Ben Ahmed, Keio Univ., Daichi Fujiki, Univ. of Michigan, Hiroki Matsumi, Keio Univ., Michihiro Koibuchi, National Institute of Informatics, Tokyo and Hideharo Amano, Keio Univ.
50 (Best paper candidate) - DAPPER: Data Aware Approximate NoC for GPGPU architectures
Venkata Yaswanth Raparti and Sudeep Pasricha, Colorado State Univ.
68 (Best paper candidate) - FreewayNoC: A DDR NoC with Pipeline Bypassing
Ahsen Eja, Chalmers Univ. of Technology, Vassilios Papaefstathiou, Foundation for Research & Technology – Hellas and Ioannis Saurdis, Chalmers Univ. of Technology
34 - Brownian Bubble Router: Enabling Deadlock Freedom via Guaranteed Forward Progress
Mayank Parasar, Ankit Sinha and Tushar Krishna, Georgia Institute of Technology
78 - Abetting Planned Obsolescence by Aging 3D Networks-on-Chip

[16:05 – 18:00] Banquet
[09:00-10:00] Keynote II
Session chair: Jiang Xu, Hong Kong Univ. of Science and Technology

[10:00 – 10:30] Posters and Coffee Break

[10:30 – 11:45] Regular Paper Session III: Cutting-Edge Network-on-Chip
Session chair: Jie Han, Univ. of Alberta
21 - A Low-Overhead Multicast Bufferless Router with Reconfigurable Banyan Network
Chaochao Feng, National Univ. of Defense Technology Changsha, Zhuofan Liao, Changsha Univ. of Science & Technology, Zhenyu Zhao, National Univ. of Defense Technology Changsha and Xiaowei He, National Univ. of Defense Technology Changsha

63 - Critical Packet Prioritisation by Slack-Aware Re-routing in On-Chip Networks

Session chair: Paul Bogdan, Univ. of Southern California
Session organizers: Dr. Jie Han, Univ. of Alberta and Dr. Eun Jung (E.J) Kim, Texas A&M Univ.

Part I: “Approximate Arithmetic Circuits”
Speaker: Dr. Jie Han, Univ. of Alberta

Part II: “Approximate Networks on Chip”
Speaker: Dr. Eun Jung (E.J) Kim, Texas A&M Univ.

[12:35 – 14:00] Lunch

[14:00 – 15:15] Industrial Session:
Session chair: Zhiguo Ge, Huawei International Pte Ltd.
1. Challenges and Opportunities for Edge Cloud architectures
Francesc Guim, Intel Corporation
2. Identifying the gaps between academic research and physical realization of NoCs
Zhigu Ge, Huawei International Pte Ltd.
3. Co-Design and Abstraction of a Network-on-Chip Using Deterministic Network Calculus
Benöît Dupont de Dinechin, Kalray S.A.

[16:05 – 16:30] Posters and Coffee Break

[16:30 – 17:45] Special Session III: “Realistic Wireless Channel Modelling for Parallel Applications on NoC-based MPSoC”
Session chair: Maurizio Palesi, Univ. of Catania
Session organizers: Jean-Philippe Diguet, Lab-STICC, Sujay Deb, IIT Delhi, Sergi Abadal, Universitat Politècnica de Catalunya
Session speakers: Jean-Philippe Diguet, Lab-STICC, Sri Harsha Gade, IIT Delhi, Sergi Abadal, Universitat Politècnica de Catalunya
1) Jean-Philippe Diguet: “Accurate Channel Models for Realistic Design Space Exploration of Future Wireless NoCs”
2) Sergi Abadal: “Channel Characterization for Chip-scale Wireless Communications within Computing Packages”

[17:45 – 18:00] Closing Remark with Best Paper Announcement
The International Symposium on Rapid System Prototyping (RSP)

Time: 8:30 - 17:00 | Room:

The International Symposium on Rapid System Prototyping (RSP) emphasizes design experience sharing and collaborative approach between hardware and software research communities from industry and academy. It considers prototyping as an iterative design approach for embedded hardware and software systems. The RSP series of symposium aim at bridging the gaps in embedded system design between applications, architectures, tools, and technologies to achieve rapid system prototyping of emerging software and hardware systems.

THURSDAY OCTOBER 4, 2018

[09:00-09:10] Opening Ceremony
[09:10-10:10] Keynote 1
Many-Core SoC in Nanoscale CMOS: Challenges & Opportunities
Vivek De, Intel Corporation
In combination with NOCS 2018

Yuuki Ooasako, Kwansei Gakuin Univ., Nagisa Ishiura, Kwansei Gakuin Univ., Hiyuki Torniyama, Ritsumeikan Univ. and Hiyuki Kanbara, ASTEM RYKoto

[10:55 – 11:20] Accurate MPSoC prototyping platform and methodology for the studying of the Linux synchronization barrier slowdowns issues
Maxime France-Pillois, Univ. Grenoble Alpes Jérôme Martin, Univ. Grenoble Alpes and Frédéric Rousseau, Univ. Grenoble Alpes

Tristan Delizy, Univ Lyon, INSA Lyon, Inria, CITI, Stephane Gros, etaladesis, Kevin Marquet, Univ Lyon, INSA Lyon, Inria, CITI, Matthieu May, Univ Lyon, Univ Lyon 1, Inria, CNRS, ENS de Lyon, LIP, Tanguy Risset, Univ Lyon, INSA Lyon, Inria, CITI and Guillaume Salagnac, Univ Lyon, INSA Lyon, Inria, CITI

Alexandre Chabot, Hsien Alosani, Smail Niar and Rêda Nouacer

[12:10 – 12:35] [TBD] Constraint Specification Language (CSL) use in the test program generator
Bernhard Egger, Seoul National Univ.

[12:10 – 12:35] Lunch

[14:00 – 14:25] Rapid Prototyping of Parameterized Rotated and Cyclic Q Delayed Constellations Demapper
Muhammad Waqas, Ali Jafari, Amer Baghdadi and M. Najam Islam

Kevin Verniers, Liesbet Van der Perre and Nobby Stevens, KU Leuven, ESA-DRWMC, Ghent Technology Campus

William Harrison, Univ. of Missouri and Gerard Allwein, US Naval Research Laboratory

[15:15 – 15:40] [TBD] a prototype platform for energy harvesting powered embedded system with non-volatile processor
Jingtong Hu, Univ. of Pittsburgh

[15:40 – 16:05] Message-oriented Devices on FPGAs
Thomas Baumela, Olivier Gruber, Muller Olivier and Frédéric Pétrot

[16:05 – 16:30] Coffee Break

[16:30 – 16:55] [TBD]
Nicolai Bombieri, Universita` di Verona

Cinzia Bernardeschi, Univ. di Pisa

[17:20 – 17:45] vicilLogic2.0: Online digital systems training and prototyping using PYNQ SoC
Fearghal Morgan, National Univ. of Ireland, Declan O’Loughlin, National Univ. of Ireland, Jeremy Audiger, National Univ. of Ireland, Yoohan Boyer, National Univ. of Ireland, Niall Timlin-Canning, National Univ. of Ireland, Krzysztof Kepa, National Univ. of Ireland, Ian Gallivan, National Univ. of Ireland, Frank Callaly, National Univ. of Ireland, László Bakó, Sapientia Hungarian Univ. of Transylvania

FRIDAY OCTOBER 5, 2018

[09:00 – 10:00] Keynote II - NoCs: a short history of success and a long future
Giovanni De Micheli, EPF Loussanne
In combination with NOCS 2018

Session 3

[10:30 – 10:55] Ambient Intelligence for the Internet of Things through Context-Awareness
Rodrigo Meurer, Federal Univ. of Santa Catarina, Antonio Frohlich, Federal Univ. of Santa Catarina and Jomi Hübner, Federal Univ. of Santa Catarina

Jean-Philippe Legault, Panagiotis Patros and Kenneth Kent, Univ. of New Brunswick

Mehran Goli, Univ. of Bremen and Cyber-Physical Systems, DFKI GmbH

[11:45 – 12:10] FPGA Prototyping of Low-Precision Zero-Skipping Accelerator for Neural Networks
Dongyoung Kim, Soobeom Kim and Sungjoo Yoo, Seoul National Univ.

[12:10 – 12:35] Lunch & End
ESWEEK COMMITTEES

GENERAL CHAIRS
Soonhoi Ha | General Chair
Seoul National Univ., South Korea

Petru Eles | Vice-General Chair
Linköping Univ., Sweden

PAST CHAIR
Lothar Thiele | Past Chair
Swiss Federal Institute of Technology, Zürich, Switzerland

PROGRAM CHAIRS
Tulika Mitra | CASES Chair
National Univ. of Singapore, Singapore

Björn Brandenburg | EMSOFT Chair
MPI for Software Systems, Germany

Akash Kumar | CASES Co-Chair
Technical Univ. of Dresden, Germany

Sriram Sankaranarayanan | EMSOFT Chair
Univ. of Colorado Boulder, United States

Aviral Shrivastava | CODES+ISSS Chair
Arizona State Univ., United States

Chenyang Lu | IoT Chair
Washington Univ., United States

Sudeep Pasricha | CODES+ISSS Co-Chair
Colorado State Univ., United States

ORGANIZATIONAL CHAIRS
Jürgen Teich | Awards Chair
Friedrich-Alexander Univ. Erlangen-Nürnberg, Germany

Luciano Lavagno | ESWEEK Conference Chair
Politecnico di Torino, Italy

Mohammad Abdullah Al Faruque | Finance Chair
Univ. of California Irvine, United States

Andreas Herkersdorf | Industry Liaison Committee Chair
Technical Univ. of Munich, Germany

Enrico Bini | Local Arrangement Chair
Univ. of Torino, Italy

Luciano Lavagno | Local Arrangement Chair
Politecnico di Torino, Italy

Samarjit Chakraborty | Panel Chair
Technical University of München, DE

Roman Lysecky | Publication Chair
Univ. of Arizona, United States

Lars Bauer | Publicity Chair
Karlsruhe Institute of Technology, DE

Ramesh Karri | Publicity Chair
New York Univ., United States

Andreas Gerstlauer | Tutorials Chair
Univ. of Texas Austin, United States

Chun Jason Xue | Web Chair
City Univ. of Hong Kong, Hong Kong

Muhammad Shafique | Workshop Chair
Vienna Univ. of Technology, AT

Muhammad Shafique | Workshop Chair
Vienna Univ. of Technology, AT
CASES COMMITTEES

PROGRAM CHAIRS
Tulika Mitra | CASES Chair
National Univ. of Singapore

Akash Kumar | CASES Co-Chair
Technical Univ. of Dresden

PROGRAM COMMITTEE
Lars Bauer
Karlsruhe Institute of Technology
Oliver Bringmann
Univ. of Tuebingen
Luca Carloni
Columbia Univ.
Jeromeo Castrillon
Technische Universität Dresden
Henri-Pierre Charles
CIA
Mainak Chaudhuri
Indian Institute of Technology
Henk Corporaal
Eindhoven Univ. of Technology
Lars Bauer
Karlsruhe Institute of Technology

PROGRAM COMMITTEE
Lars Bauer
Karlsruhe Institute of Technology
Oliver Bringmann
Univ. of Tuebingen
Luca Carloni
Columbia Univ.
Jeromeo Castrillon
Technische Universität Dresden
Henri-Pierre Charles
CIA
Mainak Chaudhuri
Indian Institute of Technology
Henk Corporaal
Eindhoven Univ. of Technology
Lars Bauer
Karlsruhe Institute of Technology

SECONDARY REVIEWERS
Aatreyi Bal
Adrian Frischknecht
Alda Miralaei
Alena Kazakova
Anuj Pathania
Babak Zamirai
Bashar Romanous
Begum Eglimez
Chen Cheng
Chen Pan
Chidambharanathan Rajamanikam
Chris Perivolaropoulos
Christian Pilato
Christos Vassiladiotis
Eduardo Wachtler
Eduardo Weber Wachtler
Emirhan Poyraz
Gagandeep Singh
Giuseppe Di Guglielmo
Giuseppe Di Guglielmo
Ho Nhut Minh
Janghyun Son
Jiecao Yu

Changhee Jung
Virginia Tech
Nachiket Kapre
Univ. of Waterloo
Ramesh Karri
New York Univ.
Andreas Kral
Technische Universität Dresden
Chang-Gun Lee
Seoul National Univ.
Jaejin Lee
Seoul National Univ.
Zhonghai Lu
KTH Royal Institute of Technology
Scott Mahlke
Univ. of Michigan
Avinash Malik
Univ. of Auckland
Mihail Maniatakos
New York Univ.
Gokhan Memik
Northwestern Univ.
Pietro Mercati
Intel
Walid Najjar
University of California, Riverside
Vijaykrishnan Narayanan
Penn State Univ.
Rupesh Nasre
IIT Madras
Sri Parameswaran
UNSW
Ardavan Pedram
Stanford Univ.

Nishil Talati
Pantiti Achararit
Paul Waller
Peng (Tom) Sun
Peng Sun
Philipp Schlicker
Prabal Basu
Pramesh Pandeya
Prerna Budhkar
PyeongSeok Oh
Rajesh Jayashankara Shridevi
Ren-shuo Liu
Roel Jordans
Sam Ainsworth
Sander Stuijk
Sayandip De
Skyler Windh
Sourav Sanyal
Stefan Köpsell
Stefano Corda
Sungyoun Park
Suzanne LESEEQ
Tanfer Alan

Christian Pilato
USI Lugano
Laura Pozzi
USI Lugano
Sanghamitra Roy
Utah State Univ.
Christian Schulte
KTH Royal Institute of Technology
Amit Kumar Singh
Univ. of Essex
Thorsten Strufe
Technische Universität Dresden
Guangyu Sun
Peking Univ.
Hiroyuki Tomiyama
Ritsumeikan Univ.
Hao Wang
Samsung
Weng-Fai Wong
National Univ. of Singapore
Chia-Lin Yang
National Taiwan Univ.
Shouyi Yin
Tsinghua Univ.
Sungjoo Yoo
Seoul National Univ.
Bo Yuan
Google
Wei Zhang
Hong Kong Univ. of Science and Technology

Taylor Soulis
Tobias Kohn
Tuo Li
Weiren Jiang
Wonjae Jang
Wonseok Lee
Wookjeong Jun
Xian Zhang
Xinyi Zhang
Yannick Boekle
Yawen Wu
Yi-Jung Chen
Yongjun Lee
Youngdong Do
Youngneun Cho
Yuan-Hao Chang
Ze Zhang
Zhenge Jia
CODES + ISSS COMMITTEES

PROGRAM CHAIRS
Aviral Shrivastava | CODES+ISSS Chair
Arizona State Univ.

Sudeep Pasricha | CODES+ISSS Co-Chair
Colorado State Univ.

PROGRAM COMMITTEE

Aviral Shrivastava
Arizona State Univ.

Sudeep Pasricha
Colorado State Univ.

Tosiron Adegbija
Univ. of Arizona

Mohammad Al Faruque
Univ. of Arkansas

David Atienza
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lars Bauer
Karlsruhe Institute of Technology

Giovanni Beltrame
Polytechnique Montreal

Christophe Bobda
Univ. of Southern California

Paul Bogdan
Univ. of Southern California

Eli Bozorgzadeh
Univ. of Arizona, Irvine

Oliver Bringmann
Univ. of Tuebingen (FZI)

Yiran Chen
Duke Univ.

Unmesh D. Bordoloi
General Motors

Erwin de Kock
NXP Semiconductors

Robert Dick
Univ. of Michigan and Strand

Gero Dittmann
IBM Research

Rainer Doemer
ECECS, Univ. of California, Irvine

Nikil Dutt
Univ. of California, Irvine

Petru Eles
Linkoping Univ.

Fabrizio Ferrandi
Politecnico di Milano

Franco Fummi
Università di Verona

Eduardo Fuzella
Univ. of Naples Federico II

Andreas Gerstlauer
The Univ. of Texas at Austin

Swaroop Ghosh
Pennsylvania State Univ.

Tony Givargis
Univ. of California, Irvine

Dimikris Gizaopoulos
Univ. of Kefalos

Michael Gaß
Ulm Univ.

Kees Goossens
Eindhoven Univ. of Technology

Ann Gordon-Ross
Univ. of Florida

Daniel Grosse
Univ. of Bremen/DFVII

Soohoi Ha
Seoul National Unv.

Frank Hannig
Friedrich-Alexander Univ. Erlangen-Nürnberg

Christian Haubelt
Univ. of Rostock

Joerg Henkel
KIT

Houman Homayoun
George Mason Univ.

Reiley Jeyapaul
ARM Research

Ramesh Karri
NYU

Soontae Kim
KAIST

Fadi Kurdi
Univ. of California, Irvine

Luciano Lavagno
Politecnico di Torino

Sébastien Le Beux
Lyon Institute of Nanotechnology

Jenq-Kuen Lee
National Tsing Hua Univ.

Kyoungwoo Lee
Yonsei Univ.

Youn-Long Lin
National Tsing Hua Univ.

Weichun Liu
Nanyang Technological Univ.

Roman Lysecky
Univ. of Arizona

Enrico Macii
Politecnico di Torino

Jan Madsen
Technical Univ. of Denmark

Grant Martin
Cadence Design Systems

Hiroki Matsutani
Keio Univ.

Roman Lysecky
Univ. of Arizona

Enrico Macii
Politecnico di Torino

Jan Madsen
Technical Univ. of Denmark

Grant Martin
Cadence Design Systems

Hiroki Matsutani
Keio Univ.

Nele Mentens
UCLouvain

Brett Meyer
McGill Univ.

Prabhat Mishra
Univ. of Florida

Wolfgang Mueller
Univ. of Paderborn (CLB)

Daniel Mueller-Gritschneder
Technical Univ. of Munich

Umit Ogras
Arizona State Univ.

Yi Rong
Hong Kong Polytechnic Univ.

Sandeep Shukla
Indian Institute of Technology

Todor Stefanov
Leiden Univ.

Greg Stitt
Univ. of Florida

Sander Stuijk
Eindhoven Univ. of Technology

Jürgen Teich
Univ. of Erlangen-Nuremberg

Hiroyuki Tomiyama
Ritsumoken KU

Eugenio Villar
Univ. of Cantabria

Jiang Xu
Hong Kong Univ. of Science and Technology

Jason Xue
City Univ. of Hong Kong

Chengmo Yang
Univ. of Delaware

Haibo Zeng
Virginia Tech

Qi Zhu
Univ. of California, Riverside

Alex Oraloglou
UC San Diego

Gianluca Palermo
Politecnico di Milano

Maurizio Palesi
Univ. of Catania

Preeiti Ranjan Panda
IIT Delhi

Partha Pande
Washington State Univ.

Sandeep Pasricha
Colorado State Univ.

Andy Pimentel
Univ. of Amsterdam

Ilia Polian
Univ. of Stuttgart

Massimo Poncino
Politecnico di Torino

Louis Noel Pouchet
Oka State Univ.

Graziano Pravadelli
Univ. of Verona

Francesco Regazzoni
Alcatel

Marco D. Santambrogio
Politecnico di Milano

Zili Shao
Hong Kong Polytechnic Univ.

Aviral Shrivastava
Arizona State Univ.

Sandeep Shukla
Indian Institute of Technology

Todor Stefanov
Leiden Univ.

Greg Stitt
Univ. of Florida

Sander Stuijk
Eindhoven Univ. of Technology

Jürgen Teich
Univ. of Erlangen-Nuremberg

Hiroyuki Tomiyama
Ritsumoken KU

Eugenio Villar
Univ. of Cantabria

Jiang Xu
Hong Kong Univ. of Science and Technology

Jason Xue
City Univ. of Hong Kong

Chengmo Yang
Univ. of Delaware

Haibo Zeng
Virginia Tech

Qi Zhu
Univ. of California, Riverside
CODES + ISSS COMMITTEES

SECONDARY REVIEWERS

<table>
<thead>
<tr>
<th>Hadi Brais</th>
<th>Yasir Mahmood Qureshi</th>
<th>Martijn Koedam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokesh Siddhu</td>
<td>Miguel Peon Quiros</td>
<td>Alessandro Frigerio</td>
</tr>
<tr>
<td>Rajesh Kedia</td>
<td>Adriana Arza Valdes</td>
<td>Mahdi Zahedi</td>
</tr>
<tr>
<td>Neetu Jindal</td>
<td>Sina Faesi</td>
<td>Giovanni Mariani</td>
</tr>
<tr>
<td>Sakshi Tiwari</td>
<td>Anthony Lopez</td>
<td>David Lemma</td>
</tr>
<tr>
<td>Radhika Dharwadkar</td>
<td>Sujit Rokka Chhetri</td>
<td>Muhammad Hassan</td>
</tr>
<tr>
<td>Bing Li</td>
<td>Nafiu Rashid</td>
<td>Rehab Massoud</td>
</tr>
<tr>
<td>Fan Chen</td>
<td>Alberto Bocca</td>
<td>Saman Froehlich</td>
</tr>
<tr>
<td>Linghao Song</td>
<td>Gianvito Urgese</td>
<td>Vladimir Herdt</td>
</tr>
<tr>
<td>Elbruz Ozen</td>
<td>Sara Vinco</td>
<td>Sobhan Niknam</td>
</tr>
<tr>
<td>Chris Nigh</td>
<td>Roger Chen-Ying Hsieh</td>
<td>Peng Wang</td>
</tr>
<tr>
<td>Leon Li</td>
<td>Delaram Amiri</td>
<td>Thomas Ekow Haywood-Dadzie</td>
</tr>
<tr>
<td>Nick Verchok</td>
<td>Tiago Muck</td>
<td>Daniel Gis</td>
</tr>
<tr>
<td>Alessandro Danese</td>
<td>Lei Yang</td>
<td>Florian Grützmacher</td>
</tr>
<tr>
<td>Florenc Demrozi</td>
<td>Bryan Donyanavard</td>
<td>Johann-Peter Wolff</td>
</tr>
<tr>
<td>Enrico Fraccaroli</td>
<td>Hoda Aghaeikhouzanni</td>
<td>Sebastian Stieber</td>
</tr>
<tr>
<td>Michele Lora</td>
<td>Fateme Hosseini</td>
<td>Benjamin Beichler</td>
</tr>
<tr>
<td>Davide Gadioli</td>
<td>Fanruo Meng</td>
<td>Jörg Fickenscher</td>
</tr>
<tr>
<td>Emanuele Vitali</td>
<td>Patrick Cronin</td>
<td>Christian Schmitt</td>
</tr>
<tr>
<td>Antonio Miele</td>
<td>Kyle Kuan</td>
<td>Behnaz Pourmohsensi</td>
</tr>
<tr>
<td>Zhuoran Zhao</td>
<td>Ankur Limaye</td>
<td>Joachim Falk</td>
</tr>
<tr>
<td>Kamyar Mirzazad Barjough</td>
<td>Subodha Charles</td>
<td>Fedor Smirnov</td>
</tr>
<tr>
<td>Wooseok Lee</td>
<td>Alii Ahmed</td>
<td>Tim Schmidt</td>
</tr>
<tr>
<td>Marina Zapater</td>
<td>Farimah Farahmandi</td>
<td>Zhongqi Cheng</td>
</tr>
<tr>
<td>William Andrew Simon</td>
<td>Reinier van Kampenhout</td>
<td></td>
</tr>
</tbody>
</table>
EMSOFT COMMITTEES

PROGRAM CHAIRS

Björn Brandenburg | EMSOFT Chair
Max Planck Institute for Software Systems (MPI-SWS)

Sriram Sankaranarayanan | EMSOFT Chair
Univ. of Colorado Boulder

PROGRAM COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houssam Abbas</td>
<td>Univ. of Pennsylvania</td>
</tr>
<tr>
<td>Tarek Abdelzaher</td>
<td>Univ. of Illinois at Urbana Champaign</td>
</tr>
<tr>
<td>Xue Bai</td>
<td>Chinese Academy of Sciences</td>
</tr>
<tr>
<td>Sanjoy Baruah</td>
<td>Washington Univ. in St. Louis</td>
</tr>
<tr>
<td>Alessandro Biondi</td>
<td>Scuola Superiore Sant’Anna - Pisa</td>
</tr>
<tr>
<td>Sergiy Bogomolov</td>
<td>Australian National Univ.</td>
</tr>
<tr>
<td>Borzoo Bonakdarpour</td>
<td>MCMaster Univ.</td>
</tr>
<tr>
<td>Timothy Bourke</td>
<td>INRIA</td>
</tr>
<tr>
<td>David Broman</td>
<td>KTH Royal Institute of Technology</td>
</tr>
<tr>
<td>Mauricio Castillo-Effen</td>
<td>GE Global Research</td>
</tr>
<tr>
<td>Thao Dang</td>
<td>VESNAI</td>
</tr>
<tr>
<td>Dakshina Dasari</td>
<td>Bosch Corporate Research</td>
</tr>
<tr>
<td>Patricia Derler</td>
<td>National Instruments</td>
</tr>
<tr>
<td>Tommaso Dresosi</td>
<td>Univ. of California, Berkeley</td>
</tr>
<tr>
<td>Ruediger Ehlers</td>
<td>Univ. of Bremen</td>
</tr>
<tr>
<td>Petru Eles</td>
<td>Linköping Univ.</td>
</tr>
<tr>
<td>Rolf Ernst</td>
<td>TU Braunschweig</td>
</tr>
<tr>
<td>Georgios Faitekos</td>
<td>Arizona State Univ.</td>
</tr>
<tr>
<td>Chris Gill</td>
<td>Washington Univ. in St. Louis</td>
</tr>
<tr>
<td>Nan Guan</td>
<td>The Hong Kong Polytechnic Univ.</td>
</tr>
<tr>
<td>Zhishan Guo</td>
<td>Missouri Univ. of Science and Technology</td>
</tr>
<tr>
<td>Ichiro Hasuo</td>
<td>National Institute of Informatics</td>
</tr>
<tr>
<td>Franjo Ivancic</td>
<td>Google</td>
</tr>
<tr>
<td>Susmit Jha</td>
<td>STIR International</td>
</tr>
<tr>
<td>Xiaoqing Jin</td>
<td>Décrypt</td>
</tr>
<tr>
<td>Taylor T. Johnson</td>
<td>Vrije Universiteit Brussel</td>
</tr>
<tr>
<td>Xenofon Koutsoukos</td>
<td>Vrije Universiteit Brussel</td>
</tr>
<tr>
<td>Pratyush Kumar</td>
<td>IIT Madras</td>
</tr>
<tr>
<td>Edward Lee</td>
<td>Univ. of California, Berkeley</td>
</tr>
<tr>
<td>Wenchao Li</td>
<td>Boston Univ.</td>
</tr>
<tr>
<td>Cong Liu</td>
<td>Univ. of Texas, Dallas</td>
</tr>
<tr>
<td>Martina Maggio</td>
<td>Lund Univ.</td>
</tr>
<tr>
<td>Renato Mancuso</td>
<td>Boston Univ.</td>
</tr>
<tr>
<td>Frank Mueller</td>
<td>North Carolina State Univ.</td>
</tr>
<tr>
<td>Geoffrey Nielissen</td>
<td>CISTER - Instituto Superior de Engenharia do Porto (ISEP)</td>
</tr>
<tr>
<td>Sam H. Noh</td>
<td>USIT - Istituto Nazionale di Informatica e Technologia (INdIT)</td>
</tr>
<tr>
<td>Necmiye Ozay</td>
<td>Univ. of Michigan</td>
</tr>
<tr>
<td>Claire Pagetti</td>
<td>ONERA</td>
</tr>
<tr>
<td>Miroslav Pajic</td>
<td>Duke Univ.</td>
</tr>
<tr>
<td>Gabriel Parmer</td>
<td>George Washington Univ.</td>
</tr>
<tr>
<td>Marc Pouzet</td>
<td>École Normale Supérieure, Paris</td>
</tr>
<tr>
<td>Pavithra Prabhakar</td>
<td>Kansas State Univ.</td>
</tr>
<tr>
<td>Sylvie Putot</td>
<td>École Polytechnique</td>
</tr>
<tr>
<td>Arjun Radhakrishna</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Kristin Yvonne Rozier</td>
<td>NASA</td>
</tr>
<tr>
<td>Ramesh S</td>
<td>General Motors R&D</td>
</tr>
<tr>
<td>Indranil Saha</td>
<td>IIT Kanpur</td>
</tr>
<tr>
<td>Wolfgang Schröder-Preikschat</td>
<td>Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)</td>
</tr>
<tr>
<td>Donatella Sciuto</td>
<td>Politecnico di Milano</td>
</tr>
<tr>
<td>Oleg Sokolsky</td>
<td>Univ. of Pennsylvania</td>
</tr>
<tr>
<td>Lothar Thiele</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>Ufuk Topcu</td>
<td>Univ. of Texas, Austin</td>
</tr>
<tr>
<td>Stavros Triapakis</td>
<td>Aalto Univ. and Univ. of California, Berkeley</td>
</tr>
<tr>
<td>Caterina Urban</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>Marcus Völp</td>
<td>Univ. of Luxembourg</td>
</tr>
<tr>
<td>Bryan Ward</td>
<td>MIT Lincoln Laboratory</td>
</tr>
</tbody>
</table>

WORK-IN-PROGRESS PROGRAM COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xin Chen</td>
<td>Univ. of Dayton</td>
</tr>
<tr>
<td>Iulia Dragomir</td>
<td>VERMAI - Univ. of Grenoble Alpes</td>
</tr>
<tr>
<td>Bardh Hoeha</td>
<td>Southern Illinois Univ.</td>
</tr>
<tr>
<td>Burcu Kulahcioglu Ozkan</td>
<td>Max Planck Institute for Software Systems (MPI-SWS)</td>
</tr>
<tr>
<td>Mitra Nasri</td>
<td>Max Planck Institute for Software Systems (MPI-SWS)</td>
</tr>
<tr>
<td>Nicola Paolletti</td>
<td>Storybrook Univ.</td>
</tr>
<tr>
<td>Anne-Kathrin Schmuck</td>
<td>Max Planck Institute for Software Systems (MPI-SWS)</td>
</tr>
<tr>
<td>Andrew Sogokon</td>
<td>Carnegie Mellon Univ.</td>
</tr>
<tr>
<td>Bai Xue</td>
<td>Chinese Academy of Sciences</td>
</tr>
</tbody>
</table>
EMSOFT COMMITTEES

SECONDARY REVIEWERS

Hamzah Abdelaziz
Leonie Abrendts
Ali Akbari
Ravi Akella
Ilge Akkaya
Paolo Arcaini
Samsil Arefin
Matthias Beckert
Ashikahmed Bhuiyan
Jiang Bian
Frédéric Boniol
Lélio Brun
Alexandra Bugariu
Feiyang Cai
Daniel Casini
Gang Chen
Arlen Cox
Marvin Damschen
Jérôme Dohrau
Adel Dokhanchi
Jeremy Dubut
Leonardo Eco
Christian Eichler
Chuchu Fan
Phani Kishore Gadepalli
Deepak Gangadharan
Ivan Gavran
Neha Ghokar
Zain A.H. Hammadeh
Mohammad Hekmatnejad
Benedict Herzog
Pierre-Emmanuel Hladik
Bardh Hoxha
Timo Höning
Antonio Iannopollo
Radoslav Ivanov
Kuk Jin Jang
Sumit Kumar Jha
Russ Joseph
Aamir Khan
Harsh Khetawat
Hokeun Kim
Tobias Klaus
Christoph Lambert
Ralph Lange
Gil Lederman
Bing Li
Jiani Li
Jianwen Li
Zexiang Liu
Marten Lohstroh
Kevin Luck
James Marshall
Ramy Medhat
Ratijit Mitra
Swarup Kumar Mohalik
Mischa Möstl
Mehrdad Niknami
Borislav Nikolic
Stefan Nürnberg
Runyu Pan
Xing Pan
Yash Vardhan Pant
Evrípidís Paraskevas
Onkar Patil
Hasan Poona wala
Bradley Potteiger
Michael Pressler
Sasinee Pruekprasert
Syed Aftab Rashid
Rajarshi Ray
Stefan Reif
Alena Rodionova
Kwesi Rutledge
Soheil Samii
Christian Schilling
Johannes Schlatow
Tobias Sehnke
Nathanael Sensfelder
Kostya Serebryany
Shashank Shekhar
Nikhil Kumar Singh
Sai Sruti
Yue Tang
Cumhur Erkan Tuncali
Peter Ulbrich
Sudharsan Vaidhun
Anh-Duy Vu
Masaki Waga
Lingxiang Wang
Matt Weber
Peter Wügemann
Hang Xu
Meng Xu
Shakiba Yaghoubi
Liren Yang
Ben Zhang
Teng Zhang
Ying Zhang
Zhenkai Zhang
Zhenya Zhang
Wei Zhao