TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chairs’ Welcome Message</td>
<td>3</td>
</tr>
<tr>
<td>General Information</td>
<td>4</td>
</tr>
<tr>
<td>ESWEEK 2019 Overview</td>
<td>5</td>
</tr>
<tr>
<td>Conference Venue Floorplan</td>
<td>6, 7</td>
</tr>
<tr>
<td>Sponsors</td>
<td>8</td>
</tr>
<tr>
<td>Best Paper Candidates</td>
<td>9</td>
</tr>
<tr>
<td>Tutorial Schedule</td>
<td>10</td>
</tr>
<tr>
<td>Monday Program</td>
<td>18</td>
</tr>
<tr>
<td>Tuesday Program</td>
<td>26</td>
</tr>
<tr>
<td>Wednesday Program</td>
<td>37</td>
</tr>
<tr>
<td>Workshops</td>
<td>47</td>
</tr>
<tr>
<td>Workshops (cont’)</td>
<td></td>
</tr>
<tr>
<td>EWiLi</td>
<td>49</td>
</tr>
<tr>
<td>HENP</td>
<td>49</td>
</tr>
<tr>
<td>INTESA</td>
<td>50</td>
</tr>
<tr>
<td>CyPhy/WESE</td>
<td>51</td>
</tr>
<tr>
<td>RSP</td>
<td>51</td>
</tr>
<tr>
<td>Symposia</td>
<td>51</td>
</tr>
<tr>
<td>NOCS</td>
<td>51-53</td>
</tr>
<tr>
<td>Committees</td>
<td>54</td>
</tr>
<tr>
<td>ESWEEK Committees</td>
<td>54</td>
</tr>
<tr>
<td>CASES Committees</td>
<td>55</td>
</tr>
<tr>
<td>CODES + ISSS Committees</td>
<td>57</td>
</tr>
<tr>
<td>EMSOFT Committees</td>
<td>60</td>
</tr>
<tr>
<td>NOCS Committees</td>
<td>62</td>
</tr>
<tr>
<td>AAIEA</td>
<td>48</td>
</tr>
<tr>
<td>CyberCardia</td>
<td>48</td>
</tr>
</tbody>
</table>
Welcome to ESWeek 2019 in New York City!

Embedded Systems Week (ESWeek) is the premier event covering all aspects of embedded systems and software. By bringing together three leading conferences (CASES, CODES+ISSS, EMSOFT), a special day on IoMT (Internet of Medical Things), one symposium (NOCS), and hot-topic workshops, special sessions, and tutorials, ESWeek presents attendees a wide range of choices unveiling state of the art embedded systems design and hardware/software architectures.

Following the journal-integrated publication model for the three conferences (CASES, CODES+ISSS, and EMSOFT), all regular papers presented are published in the ACM Transactions on Embedded Computing Systems. To this end, the review process of the conferences was conducted in two stages with the opportunity of minor/major revisions before the final decision. In addition, the selected Work-in-Progress track papers are published in the ESWeek Proceedings.

The technical program on Monday, Tuesday, and Wednesday consists of six special sessions and 25 regular sessions from the three conferences. There is a strong emphasis on interaction as, connected to each paper, there also is a poster presentation during which the participants can discuss the papers with the authors.

On Tuesday we have the special IoMT day, focusing on the newest developments in the “Internet of Medical Things” from an embedded and cyber-physical systems perspective. A sequence of three special sessions is exclusively devoted to this subject.

Highlights of the ESWeek program are three distinguished keynote talks by prominent leaders in academia and industry, covering most relevant trends for future embedded and cyber-physical systems and providing deep insights into technology drivers. Dr. Stephen Keckler, Vice President of Architecture Research at NVIDIA and Adjunct Professor at the University of Texas at Austin, addresses the impact of modern applications with huge computational requirements such as intelligent video analytics, autonomous vehicles, and robotics on the world of embedded computing devices. Professor Dina Katabi, from MIT, will introduce Emerald, a new wireless technology that uses machine learning for health monitoring at home without the requirement to wear any sensors or wearables. By monitoring a variety of physiological signals continuously and without imposing a burden on users, Emerald can automatically detect degradation in health, enabling early intervention and care. In his Wednesday keynote, Professor Pramod Khargonekar, Vice Chancellor for Research, University of California Irvine, argues that by meaningfully connecting the field of cyber-physical systems with machine learning on the one hand and social-behavioral-economic sciences on the other, future research can make contributions of huge significance to the society.

The conference program will conclude with the traditional panel on Wednesday afternoon focusing on “The Internet of Medical Things (IoMT): What is the Future?” Top experts from academia and industry will share their views on this highly relevant topic.

The tutorials on Sunday precede the conferences and are an excellent opportunity to get in-depth knowledge in new trends and hot topics. There are six half-day tutorials and one full-day tutorial, covering a wide scope, from machine learning security to open-source hypervisors for embedded platforms. Two of the tutorials are offered by industry sponsors Intel and Xilinx.

Thursday and Friday are the days for the symposium and workshops. Besides the NOCS (Networks on Chip) symposium, we have seven workshops covering a wide range of important topics in embedded systems: RSP (Rapid System Prototyping), AAIEA (Accelerating Artificial Intelligence for Embedded Autonomy), CyberCardia (Medical CPS Systems), EWili (Embedded Operating Systems), HENP (Highly Efficient Neural Processing), INTESA (INTelligent Embedded Systems Architecture and Applications), and a merger of CyPhy (Model-Based Design of Cyber Physical Systems) with WESE (Workshop on Embedded Systems Education).

The organization of ESWeek was only possible with the continuous support and help from many volunteers: The program chairs with their program committee members, the organizers of the special day, the workshops, tutorials, and symposia, all members of the organization committee, and, last but not least, the local arrangements chairs and their team.

We are looking forward to meeting you at the inspiring and interesting ESWeek 2019 in New York City!
Welcome to New York!

The City of New York, usually called either New York City (NYC) or simply New York (NY), is the most populous city in the United States. A global power city, New York City has been described as the cultural, financial, and media capital of the world, and exerts a significant impact upon commerce, entertainment, research, technology, education, politics, tourism, art, fashion, and sports. Several sources have ranked New York the most photographed city in the world. Times Square, iconic as the world’s “heart” and its “Crossroads”, is the brightly illuminated hub of the Broadway Theater District, one of the world’s busiest pedestrian intersections, and a major center of the world’s entertainment industry. The names of many of the city’s landmarks, skyscrapers, and parks are known around the world.

New York City is a tourist’s paradise and has witnessed a growing combined volume of international and domestic tourists, receiving approximately 62.8 million visitors in 2017. Major tourist destinations include Times Square; Broadway theater productions; the Empire State Building; the Statue of Liberty; Ellis Island; the United Nations Headquarters; museums such as the Metropolitan Museum of Art; greenspaces such as Central Park and Washington Square Park (the main venue for ESWeek 2019); Rockefeller Center; the Manhattan Chinatown; luxury shopping along Fifth and Madison Avenues; and events such as the Halloween Parade in Greenwich Village; the Macy’s Thanksgiving Day Parade; the lighting of the Rockefeller Center Christmas Tree; the St. Patrick’s Day parade; seasonal activities such as ice skating in Central Park in the wintertime; the Tribeca Film Festival; and free performances in Central Park at Summerstage. Major attractions in the boroughs outside Manhattan include Flushing Meadows-Corona Park and the Unisphere in Queens; the Bronx Zoo; Coney Island, Brooklyn; and the New York Botanical Garden in the Bronx. Embedded Systems Week will be held at New York University’s campuses in New York City. The main conference events are at NYU’s Manhattan campus, around the picturesque Washington Square Park in Greenwich Village, one of New York City’s most historic neighborhoods, known as an artists’ haven, its Bohemian capital, the cradle of the modern LGBT movement, and the East Coast birthplace of both the Beat and ‘60s counterculture movements. Then, for the workshops, we move across the iconic Brooklyn Bridge to NYU’s engineering campus in trendy Brooklyn, a thriving hub of entrepreneurship and high technology startup firms, of postmodern art and design. We encourage ESWeek attendees to enjoy, explore and take advantage of the City that Never Sleeps!

[Source: Wikipedia]
ESWEEK 2019 OVERVIEW

<table>
<thead>
<tr>
<th>Sunday, October 13</th>
<th>Monday, October 14</th>
<th>Tuesday, October 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorials</td>
<td>Opening Session</td>
<td>Keynote by Dina Katabi</td>
</tr>
<tr>
<td>Welcome Reception</td>
<td>Keynote by Steve Keckler</td>
<td>CASES, CODES+ISSS, EMSOFT & IoMT Day Sessions</td>
</tr>
<tr>
<td></td>
<td>CASES, CODES+ISSS, & EMSOFT Sessions</td>
<td>Poster Sessions</td>
</tr>
<tr>
<td></td>
<td>Poster Sessions</td>
<td>IoMT Design Contest</td>
</tr>
<tr>
<td></td>
<td>ACM Student Research Competition</td>
<td>Social Event - Carmine’s Restaurant in Times Sq & Broadway Show</td>
</tr>
<tr>
<td></td>
<td>Technical Program Committee Dinner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wednesday, October 16</th>
<th>Thursday, October 17</th>
<th>Friday, October 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keynote by Pramod Khargonekar</td>
<td>NOCS Symposium</td>
<td>NOCS Symposium</td>
</tr>
<tr>
<td>CASES, CODES+ISSS, EMSOFT Sessions</td>
<td>AAIEA Workshop</td>
<td>CyPhy/WSE Workshop</td>
</tr>
<tr>
<td>Poster Sessions</td>
<td>CyberCardia Workshop</td>
<td>RSP Workshop</td>
</tr>
<tr>
<td>ACM Student Research Competition</td>
<td>CyPhy/WSE Workshop</td>
<td></td>
</tr>
<tr>
<td>Awards Ceremony</td>
<td>EWiLi Workshop</td>
<td></td>
</tr>
<tr>
<td>ESWEEK Panel</td>
<td>HENP Workshop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTESA Workshop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RSP Workshop</td>
<td></td>
</tr>
</tbody>
</table>
Conference Venue at a Glance

<table>
<thead>
<tr>
<th>Event</th>
<th>Days</th>
<th>Venue</th>
<th>Building/Address</th>
<th>Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESWeek Tutorials</td>
<td>Sunday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWeek Sunday Reception</td>
<td>Sunday</td>
<td>NYU Washington Square Campus</td>
<td>Furman Hall</td>
<td>Closest subway is West 4th St. subway in Manhattan, served by A, C, E, B, D, F, M</td>
</tr>
<tr>
<td>ESWeek Main Conference</td>
<td>Mon.-Wed.</td>
<td></td>
<td>NYU AD Building</td>
<td></td>
</tr>
<tr>
<td>Networks on Chip Symposium (NOCS)</td>
<td>Thu.-Fri.</td>
<td>NYU Brooklyn Campus</td>
<td>NYU AD Building</td>
<td>Closest subway is Jay St. Metrotech subway in Brooklyn, served by A, C, F</td>
</tr>
</tbody>
</table>

Directions from NYU Washington Square to NYU Brooklyn:

The fastest way is via subway. From the West 4th St. Subway Stations (see Map A), take A,C,F towards Downtown/ Brooklyn and get off at the Jay St. Subway Station. The travel time is roughly 20 minutes and costs $2.75.
Kimmel Center (KC) Floorplans

The ESWeek Main Conference will be held in Kimmel Center (KC) and spread out over three floors: Floors 4, 8 and 9. Floorplans of these floors are below.
Thank You to Our Sponsoring Societies

Thank You to Our Platinum Sponsors

Thank You to Our Gold Sponsors

Thank You to Our Silver Sponsors
BEST PAPER CANDIDATES

CASES

1A.2 AGGRESSIVE ENERGY REDUCTION FOR VIDEO INFERENCE WITH SOFTWARE-ONLY STRATEGIES
Authors:
Larissa Rozales Gonçalves - Univ. Federal do Rio Grande do Sul
Rafael Fão de Moura - Univ. Federal do Rio Grande do Sul
Luigi Carro - Univ. Federal do Rio Grande do Sul

2A.2 AN ULTRA-LOW ENERGY HUMAN ACTIVITY RECOGNITION ACCELERATOR FOR WEARABLE HEALTH APPLICATIONS
Authors:
Ganapati Bhat - Arizona State Univ.
Yigit Tuncel - Arizona State Univ.
Sizhe An - Arizona State Univ.
Hyung Gyu Lee - Daegu Univ., Republic of Korea
Umit Ogras - Arizona State Univ.

6A.1 OUTPUT-BASED INTERMEDIATE REPRESENTATION FOR TRANSLATION OF TEST PATTERN PROGRAMS
Authors:
Minsu Kim - Seoul National Univ., Republic of Korea
Jeong-keun Park - Seoul National Univ., Republic of Korea
Sungyeol Kim - Samsung Electronics Co., Ltd
Insu Yang - Samsung Electronics Co., Ltd
Hyunsoo Jung - Samsung Electronics Co., Ltd
Soo-Mook Moon - Seoul National Univ., Republic of Korea

CODES + ISSS

3B.2 ACHIEVING LOSSLESS ACCURACY WITH LOSSY PROGRAMMING FOR EFFICIENT NEURAL-NETWORK TRAINING ON NVM-BASED SYSTEMS
Authors:
Wei-Chen Wang - Macronix International Co., Ltd., Taiwan
Yuan-Hao Chang - Academia Sinica, Taiwan
Tei-Wei Kuo - National Taiwan Univ.
Chien-Chung Ho - National Chung Cheng Univ., Taiwan
Yu-Ming Chang - National Taiwan Univ., Taiwan
Hung-Sheng Chang - Macronix International Co., Ltd.

5B.1 ACCUMULATIVE DISPLAY UPDATING FOR INTERMITTENT SYSTEMS
Authors:
Hashan Roshantha Mendis - Academia Sinica, Taiwan
Pi-Cheng Hsiu - Academia Sinica, Taiwan

EMSOFT

1C.1 DERIVING EQUATIONS FROM SENSOR DATA USING DIMENSIONAL FUNCTION SYNTHESIS
Authors:
Sam Willis - Cambridge Univ.
Youchao Wang - Cambridge Univ.
Vasileios Tsoutsouras - Cambridge Univ.
Phillip Stanley-Marbell - MIT

4C.1 STATISTICAL VERIFICATION OF HYPERPROPERTIES FOR CYBER-PHYSICAL SYSTEMS
Authors:
Yu Wang - Duke Univ.
Mojtaba Zarei - Duke Univ.
Borzoo Bonakdarpour - Iowa State Univ.
Miroslav Pajic - Duke Univ.

4C.2 POLAR: FUNCTION CODE AWARE FUZZ TESTING OF ICS PROTOCOL
Authors:
Zhengxiong Luo - Tsinghua Univ.
Feilong Zuo - Tsinghua Univ.
Yu Jiang - Tsinghua Univ.
Jian Gao - Tsinghua Univ.
Xun Jiao - Villanova Univ.
Jiaguang Sun - Tsinghua Univ.
SUNDAY, OCTOBER 13

TUTORIALS SCHEDULE

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 18:00</td>
<td>Furman Hall 120</td>
<td>Hardware Design in the 21st Century with the Object Oriented and Functional Language Chisel</td>
</tr>
<tr>
<td>09:00 - 13:00</td>
<td>Furman Hall 214</td>
<td>Machine Learning for Design and Optimization of Embedded Systems</td>
</tr>
<tr>
<td>09:00 - 13:00</td>
<td>Furman Hall 210</td>
<td>Machine Learning Security</td>
</tr>
<tr>
<td>09:00 - 13:00</td>
<td>Furman Hall 212</td>
<td>Industry Tutorial: The Open Source ACRN Hypervisor on an Intel Embedded Platform</td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td>Furman Hall 120</td>
<td>Lunch</td>
</tr>
<tr>
<td>14:00 - 18:00</td>
<td>Furman Hall 120</td>
<td>Hardware Design in the 21st Century with the Object Oriented and Functional Language Chisel</td>
</tr>
<tr>
<td>14:00 - 18:00</td>
<td>Furman Hall 214</td>
<td>Open-Source Hardware: Heterogeneous System Integration with Embedded Scalable Platforms</td>
</tr>
<tr>
<td>14:00 - 18:00</td>
<td>Furman Hall 210</td>
<td>HW/SW Modeling and Performance Analysis of Heterogeneous Safety-Critical Systems</td>
</tr>
<tr>
<td>14:00 - 18:00</td>
<td>Furman Hall 212</td>
<td>Industry Tutorial: PYNQ: Python Productivity for Zynq</td>
</tr>
<tr>
<td>18:00 - 20:00</td>
<td>Room: NYU AD Building</td>
<td>Welcome Reception</td>
</tr>
</tbody>
</table>

Images of the Charging Bull and the Fearless Girl statue in New York City.
Tutorial 1 - Hardware Design in the 21st Century with the Object Oriented and Functional Language Chisel

Time: 9:00 - 18:00 | **Room:** Furman Hall 120

Organizer:
Martin Schoeberl - Technical Univ. of Denmark

Speakers:
- Martin Schoeberl - Technical Univ. of Denmark
- Schuyler Eldridge - IBM T. J. Watson Research Center

To develop future more complex digital circuits in less time we need a better hardware description language than VHDL or Verilog. Chisel is a hardware construction language intended to speedup the development of digital hardware and hardware generators.

Chisel is a hardware construction language implemented as a domain specific language in Scala. Therefore, the full power of a modern programming language is available to describe hardware and, more important, hardware generators. Chisel has been developed at UC Berkeley and successfully used for several tape outs of RISC-V by UC Berkeley students and a chip for a tensor processing unit by Google. Here at the Technical Univ. of Denmark we use Chisel in the T-CREST project and in teaching advanced computer architecture.

The Chisel/FIRRTL Hardware Compiler Framework enables back end specialization (e.g., to target specific FPGAs or ASIC technologies) and LLVM-like programmability via use of existing transforms (e.g., for run-time fault injection) or user-defined custom transformations. The tutorial will include an overview of the architecture of the Chisel/FIRRTL Hardware Compiler Framework and the design and use of custom FIRRTL transformations to automate the low-level modification of FIRRTL circuits.

The tutorial consists of two sessions. In the morning session, we will give an overview of Chisel to describe circuits, how to use the Chisel tester functionality to test and simulate digital circuits, and present how to synthesize circuits for an FPGA.

The advanced functionality of Chisel for the description of circuit generators, including concepts of circuit generators and background of the hardware representation in FIRRTL will be presented in the afternoon session. Therefore, for just a brief introduction to Chisel the second session is optional.

The aim of the course is to get a basic understanding of a modern hardware description language and be able to describe simple circuits in Chisel. This course will give a basis to explore more advanced concepts of circuit generators written in Chisel/Scala. The intended audience is hardware designers with some background in VHDL or Verilog, but Chisel is also a good first hardware language for software programmers entering into hardware design (e.g., porting software algorithms to FPGAs for speedup).

BIOGRAPHIE(S):

Martin Schoeberl received his PhD from the Vienna Univ. of Technology in 2005. From 2005 to 2010 he has been Assistant Professor at the Institute of Computer Engineering. He is now Associate Professor at the Technical Univ. of Denmark. His research interest is on hard real-time systems, time-predictable computer architecture, and real-time Java. Martin Schoeberl has been involved in a number of national and international research projects: JEOPARD, CJ4ES, T-CREST, RTEMP, the TACLe COST action, and PREDICT. He has been the technical lead of the EC funded project T-CREST. He has more than 100 publications in peer reviewed journals, conferences, and books. Martin has been four times at UC Berkeley on 3-4 months research stays, where he has picked up Chisel and was in close contact with the developers of Chisel. He lead the research project T-CREST where most of the components have been written in Chisel. Martin is currently finalizing the book ‘Digital Design with Chisel’, which is available in open source. The first edition of the Chisel book will be available at the tutorial.

Schuyler Eldridge received his PhD from Boston Univ. in 2016 where he worked to build machine learning accelerators and hardware monitors integrated with the RISC-V Rocket Chip project. He joined IBM T. J. Watson in 2016 and is currently a research staff member there working in the Reliability and Power-Aware Microarchitectures group. He has been involved with the DARPA PERFECT and DSSoC programs working to rapidly build SoCs, develop/integrate accelerator hardware, and improve hardware design methodologies through the application of software engineering paradigms. Schuyler is an active contributor to and code reviewer on the Chisel and FIRRTL projects. Most recently he has contributed the BoringUtils API to Chisel and led the “Stage/Phase” refactor of Chisel and FIRRTL. He is also the author of DANA, a machine learning accelerator in Chisel, and the Chiffre Chisel/FIRRTL run-time fault injection framework.
Tutorial 2 - Open-Source Hardware: Heterogeneous System Integration with Embedded Scalable Platforms

Time: 14:00 - 18:00 | **Room:** Furman Hall 214

Organizer:
Luca P. Carloni - Columbia Univ.

Speakers:
Luca P. Carloni - Columbia Univ.
Giuseppe Di Guglielmo - Columbia Univ.
Davide Giri - Columbia Univ.
Paolo Mantovani - Columbia Univ.

Heterogeneous systems-on-chip empower all modern intelligent systems. We start by explaining the implications of the ever-increasing variety of specialized accelerators present in SoCs: the price for the efficiency gain they offer is the complexity of system integration. To address this challenge, we developed Embedded Scalable Platforms. By combining a scalable architecture with a system-level methodology, ESP simplifies the design of individual accelerators and automates their hardware/software integration.

First, we discuss the properties of ESP that are key for open-source hardware, including flexibility, modularity, scalability and reusability. Then, we demonstrate the main features of the open-source ESP infrastructure, including integration of third-party RISC-V cores and accelerators developed with various design flows (high-level synthesis, Chisel, RTL), system-level ESP services for managing heterogeneity, and reconfigurable cache-coherence models for accelerators. Finally, we illustrate the ESP software-stack templates that enable system-level simulation for testing accelerators with bare-metal applications and full-system FPGA-based emulation for software development.

BIOGRAPHIE(S):
Luca P. Carloni is Professor of Computer Science at Columbia Univ. in the City of New York. He holds a Laurea Degree in Electronics Engineering from the Univ. of Bologna and the MS and PhD degrees in Electrical Engineering and Computer Sciences from UC Berkeley. His research interests are in system-on-chip platforms and distributed embedded systems. He coauthored over one hundred and forty refereed papers. Luca received the NSF CAREER Award, the ONR Young Investigator Award, and an Alfred P. Sloan Research Fellowship. In 2013, Luca served as general chair of Embedded Systems Week. Luca is an IEEE Fellow. Giuseppe Di Guglielmo received the Laurea degree (summa cum laude) and the PhD degree in Computer Science from the Univ. of Verona, Italy in 2005 and 2009, respectively. He is currently an Associate Research Scientist with the Department of Computer Science, Columbia Univ., New York. His PhD thesis was on the verification and validation of system-level hardware design. His current research topics include the design, validation, and security of hardware accelerators. He is also interested in the acceleration of machine learning applications for physics and robotics with high-level synthesis and FPGA platforms. He has authored over 50 publications.

Davide Giri is a PhD student in Computer Science at Columbia Univ. He received the MS degree in electronic engineering from Politecnico di Torino and the MS degree in electrical and computer engineering from the Univ. of Illinois at Chicago. His research interests include architectures and system-level design methodologies for heterogeneous system-on-chip.

Paolo Mantovani is an Associate Research Scientist at Columbia Univ.. He earned the MS in Electronic Engineering at Politecnico di Torino and the PhD in Computer Science at Columbia Univ.. His PhD and current research interests include architecture design and system-level methodologies for the integration and programming of heterogeneous computing platforms. Paolo contributes to the open-source hardware community as the main architect of the ‘Embedded Scalable Platforms’ architecture and FPGA emulation infrastructure.
Tutorial 3 - Machine Learning for Design and Optimization of Embedded Systems

Time: 9:00 - 13:00 | **Room:** Furman Hall 214

Organizer:
Jana Doppa - Washington State Univ.

Speakers:
Jana Doppa - Washington State Univ.
Philip Brisk - Univ. of California, Riverside

The rate of growth of Big Data, slowing down of Moore’s law, and the rise of emerging applications pose significant challenges in the design of large-scale computing systems with high-performance, energy-efficiency, and reliability. This tutorial will consider solutions based on machine learning and data analytics to address these challenges. Some specific topics include:

1. How to use machine learning and statistical modeling for effective design space exploration of computing systems to optimize for power, performance, and thermal metrics?
2. How to use machine learning techniques to efficiently manage resources of computing systems (e.g., power, memory, interconnects) to improve performance and energy-efficiency?
3. How to use machine learning techniques same-generation GPU prediction, cross-generation GPU prediction, and CPU to FPGA prediction?

BIOGRAPHIE(S):

Jana Doppa is the George and Joan Berry Assistant Professor in the School of EECS at Washington State Univ., Pullman. He earned his PhD working with the AI group at Oregon State Univ. (2014); and his M.Tech from Indian Institute of Technology, Kanpur, India (2006). His current research interests are at the intersection of machine learning and electronic design automation. He received NSF CAREER Award (2019), an Outstanding Paper Award at the AAAI (2013) conference, a Google Faculty Research Award (2015), the Outstanding Innovation in Technology Award from OSU (2015), and a Outstanding Reviewer Award at the NeurIPS (2018) conference.

Philip Brisk received the B.S., M.S., and Ph.D., all in Computer Science, from UCLA in 2002, 2003, and 2006 respectively. From 2006-2009, he was a postdoctoral scholar at EPFL in Lausanne, Switzerland. Since 2009, he has been with the Univ. of California, Riverside; he has been promoted to Professor effective July 1, 2019. Dr. Brisk’s research interests lie at the intersection between processor architecture, VLSI/CAD, compilers, FPGAs, and reconfigurable computing; most recently, he has been applying these principles to the design and analysis of biological instruments. He is a Senior Member of the ACM and IEEE, and is presently an Associate Editor of the IEEE Transactions of Computer-Aided Design on Integrated Circuits and Systems (TCAD) and Integration: The VLSI Journal.
Tutorial 4 - HW/SW Modeling and Performance Analysis of Heterogeneous Safety-Critical Systems

Time: 14:00 - 18:00 | **Room:** Furman Hall 210

Organizers:
Selma Saidi - Hamburg Univ. of Technology
Arne Hamann - Robert Bosch GmbH

Speakers:
Dirk Ziegenbein - Robert Bosch GmbH
Helmar Wieland - INCHRON GmbH
Rafik Henia - Thales Research and Technology
Selma Saidi - Hamburg Univ. of Technology

The current trend in safety-critical systems towards automation and connectivity imposes an increased complexity and hardware/software system heterogeneity. This trend tremendously challenges established modeling and performance analysis methods and tools used for the design of safe and correct systems where particularly stringent requirements on worst-case response times and end-to-end latencies need to be met.

The tutorial will highlight recent challenges in modeling and timing analysis of safety-critical systems recently integrated on general-purpose heterogeneous MPSoCs platforms. The tutorial will cover performance analysis considering formal timing analysis approaches dedicated to shared network and memory resources as well as simulation for the analysis of dynamic behavior of software. The tutorial will also present Time4Sys, an open source pivot model that addresses the fundamental issue of the semantic gap between the various design languages and their underlying timing concepts present in existing timing analysis frameworks. The tutorial will besides introduce AMALTHEA, an open source data format for performance modeling, simulation, and analysis of embedded and automotive systems.

BIOGRAPHIE(S):

Dirk Ziegenbein is chief expert for engineering of cyber-physical systems at Robert Bosch Corporate Research. Additionally, he leads a team of 20 experts researching software systems engineering methods for cyber-physical systems in automotive, robotics and IoT. Dirk received a Ph.D. degree from Technical Univ. of Braunschweig for his dissertation on modeling and design automation of embedded systems. In 2002, Dirk joined Bosch Research and worked on topics such as software component technology and scheduling analysis. From 2007 to 2012, he was responsible for the product management of embedded software engineering tools at ETAS GmbH.

Helmar Wieland graduated in 2007 from Friedrich-Alexander-Univ. of Erlangen-Nuremberg with a degree in computer science. For his diploma thesis, he created a timing accurate simulator for cache memories for his future employer, INCHRON GmbH. Since then, he has stayed true to the real-time community. In various positions, he is driving the advancement of chronSIM, the real-time simulator and INCHRON’s core product, training its users and helping them design excellent and robust system and software architectures. He also has more than 10 years of experience conducting customer projects with the automotive industry’s leading OEMs and Tier-1s.

Rafik Henia graduated from the Technical Univ. of Braunschweig in 2003 where he worked as a researcher at the Institute of Computer and Network Engineering with research topics related to the timing verification for real-time embedded systems. Since 2009, he has been a research engineer at Thales Research and Technology France, in the Critical Embedded Systems Lab. He works in collaboration with Thales avionics, aerospace, telecommunication and defense divisions on R&D projects mostly focusing on the integration of model-based performance design and verification techniques in the industrial development process of real-time embedded systems.

Arne Hamann obtained his PhD in Computer Science in 2008 from the Technical Univ. of Braunschweig, Germany. His PhD thesis was awarded the EDAA Outstanding Dissertation Award 2009 in the category “New directions in embedded system design and embedded software”. Currently, Arne Hamann is working for Bosch Corporate Research in the division of “Software-intensive Systems”. There, he acts as a chief expert for distributed intelligent systems and real-time system design principles for physically dominated embedded systems. Additionally, he regularly serves as program committee members for international conferences such as ECRTS, DAC, EMSOFT, RTSS, DSD, and ETFA.

Selma Saidi received a Ph.D from the Univ. of Grenoble in 2012 working jointly with STMicroelectronics on optimizing memory transfers for a new generation of embedded multicore architectures. Later she joined the Technical Univ. of Braunschweig as a post doctoral researcher to work on embedded multi-core platforms dedicated to real-time and safety critical systems. Currently, she has a permanent research position in Hamburg Univ. of Technology. Her research interests involve developing new timing analysis methods for hardware components in MPSoCs, in addition to novel HW/SW mechanisms to ensure efficient and safe sharing of resources in heterogeneous systems.
Tutorial 5 - Machine Learning Security

Time: 9:00 - 13:00 | Room: Furman Hall 210

Organizer:
Siddharth Garg - New York Univ.

Speakers:
Muhammad Shafique - Vienna Univ. of Technology
Siddharth Garg - New York Univ
Brendan Dolan-Gavitt - New York Univ

With the growing use of artificial intelligence (AI) and machine learning (ML) techniques in a wide range of domains, questions about their safety, security and privacy are of growing importance. A growing body of work suggests that modern AI and ML techniques are vulnerable to attack. Attacks include stealthy training data poisoning attacks, and so-called "adversarial input perturbations" which have to been shown to be particularly pernicious for deep neural networks. Further, as deep learning systems are often trained and executed in the cloud, concerns about the privacy of the user's data and the IP rights of the model's owner must be addressed. This tutorial will provide a comprehensive overview of a range of integrity and privacy attacks and emerging defense mechanisms.

BIOGRAPHIE(S):

Siddharth Garg received his Ph.D. degree in ECE from Carnegie Mellon Univ. in 2009, and a B.Tech. degree in EE from the Indian Institute of Technology Madras. He joined NYU in Fall 2014 as an Assistant Professor. His general research interests are in computer engineering, and more particularly in secure, reliable and energy-efficient computing. In 2016, Siddharth was listed in Popular Science Magazine’s annual list of “Brilliant 10” researchers. Siddharth has received the NSF CAREER Award (2015), and paper awards at IEEE Symposium on Security and Privacy (S&P) 2016 and USENIX Security Symposium 2013.

Muhammad Shafique is a full professor (Univ. Prof.) of Computer Architecture and Robust Energy-Efficient Technologies (CARE-Tech.) at the Embedded Computing Systems Group, Institute of Computer Engineering, Faculty of Informatics, Vienna Univ. of Technology (TU Wien) since Nov. 2016. He received his Ph.D. in Computer Science from Karlsruhe Institute of Technology (KIT), Germany in Jan. 2011. His research interests are in energy-efficient, dependable & fault-tolerant system design, hardware security, machine Learning and AI, and embedded systems. Dr. Shafique received 2015 ACM/SIGDA Outstanding New Faculty Award and several best paper awards and nominations at prestigious conferences like CODES+ISSS, DATE, DAC and ICCAD.

Brendan Dolan-Gavitt is currently an Assistant Professor in the Computer Science and Engineering Department at the NYU Tandon School of Engineering. His research interests include program analysis, virtualization security, machine learning security and embedded and cyber-physical systems. Currently, his research focuses on developing techniques to ease or automate the understanding of large, real-world software systems in order to develop novel defenses against attacks. He received his PhD from Georgia Tech in August 2014, and a B.A. in Mathematics and Computer Science from Wesleyan Univ. in 2006.
Tutorial 6 - Industry Tutorial: PYNQ: Python Productivity for Zynq

Time: 14:00 - 18:00 | Room: Furman Hall 212

Organizer:
Parimal Patel - Xilinx Univ. Program (XUP)

Speakers:
Parimal Patel - Xilinx Univ. Program

PYNQ is an open-source framework (http://www.pynq.io/) that enables programmers who want to use embedded systems to exploit the capabilities of Xilinx Zynq SoCs, which are processor-centric platforms that offer software-, hardware- and I/O-level programmability in a single chip. It allows users to exploit custom hardware in the programmable logic without having to use ASIC-style CAD tools. Instead the SoC is programmed in Python and the code is developed and tested directly on the embedded system. The programmable logic circuits are imported as hardware libraries and programmed through their APIs, in essentially the same way that software libraries are imported and programmed.

The framework combines four main elements: (1) the use of a high-level productivity language, Python in this case; (2) Python-callable hardware libraries based on FPGA overlays; (3) a web-based architecture incorporating the open-source Jupyter Notebook infrastructure served from Zynq’s embedded processors; and (4) Jupyter Notebook’s client-side, web apps. The result is a web-centric programming environment that enables software programmers to work at higher levels of design abstraction and to reuse both software and hardware libraries.

This tutorial will give a hands-on introduction to PYNQ framework using PYNQ-Z2 board. It will feature the latest PYNQ release which includes an updated API, an optimized video pipeline, a simplified way of integrating new hardware and drivers into PYNQ, partial reconfiguration support, and developing, compiling, and deploying C-language code straight from the Jupyter notebook without opening Xilinx SDK tool. The tutorial will also include demonstration of some notebook examples of how the framework can be used in in the development, testing and modeling of cyber-physical systems.

BIOGRAPHIE(S):
Parimal Patel received a Doctor of Philosophy in Electrical and Computer Engineering from the Univ. of Texas at Austin, Texas in 1986.

In 1987 he joined the Univ. of Texas as an Assistant Professor, got promoted to Associate and then to Full Professorships. During his tenure at the Univ. he taught variety of courses including Logic Design, Digital Systems Design, Microcomputer Systems (peripheral interface principles), Embedded Systems Design, VLSI System Design, Computer Architecture, RISC Processor Design, Engineering Workstations, and Advanced HDL modeling.

Parimal has always enjoyed teaching and developing new courses. He started as a contract trainer and then full-time employee of Xilinx developing variety of courses for Customer Education department. He joined the Xilinx Univ. Program in April 2007 developing new courses, updating current courses, and delivering XUP workshops worldwide, including High-Level Synthesis, Embedded Systems, Advanced Embedded Systems, DSP Design Flow, DSP Implementation Techniques, Designing with SDSoc, Dynamic Partial Reconfiguration, Python Productivity on Zynq (PYNQ), and Accelerated Cloud Computing on AWS with SDAccel.
Tutorial 7 - Industry Tutorial: The Open Source ACRN Hypervisor on an Intel Embedded Platform

Time: 9:00 - 13:00 | **Room:** Furman Hall 212

Organizer:
Kashif Rajput - Intel Corp.

Speakers:
Kashif Rajput - Intel Corp.
Sainath Grandhi - Intel Corp.

Project ACRN pronounced (ACORN), was launched as a Linux Foundation project on March’18. This is an open source lightweight device hypervisor, specifically designed for Internet of Things (IoT) workload consolidation use cases. In addition to be small footprint, Project ACRN is designed with Function Safety & real time in mind, which are two highly critical requirements in IoT.

This tutorial will explain/show case at length Intel’s Hypervisor initiative known as ACRN and also teach how to get access to its open source code, compile/build and then load it on an Intel Embedded platform for various emerging Industry virtualization use cases. A virtualized environment will be setup on Intel’s Apollo Lake embedded hardware reference platform and then Android Guest OS will be configured to run on it. Once done with the virtualized environment setups, the various aspects of selecting system parameters to measure and configure performance will be discussed along with the tools involved. Finally the tutorial will cover the IoT use cases of ACRN hypervisor in the Automotive segment and Industrial Segment.

Pre-requisites:
* Familiarity with Linux OS and Android OS
* Familiarity with BSP Development Concepts
* Comfortable with handling Hardware Reference boards/dev kits
* Familiarity with Virtualization concepts

BIOGRAPHIE(S):

Kashif Rajput is a Software Architect with Intel’s Internet of Things Group (IOTG), leading the Android BSP (Board Support Package) Software Development within IOTG. Industry software development experience of around 20 years with focused 13 years’ experience in Embedded BSP development on various operating systems such as VxWorks, Embedded Linux, WinCE and now Android. Kashif holds a Master’s degree in Software Engineering.

Sainath Grandhi is a Software Engineer with Virtualization Group in Intel. Experience working with hypervisors, KVM and ACRN. Prior to working in Virtualization group, experience in power management and scheduler optimizations for Windows Kernel. Sainath holds Master’s degree in Computer Engineering.
MONDAY, OCTOBER 14

SCHEDULE OF EVENTS

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:15 - 09:00</td>
<td>ESWEEK Opening Session</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>09:00 - 10:00</td>
<td>KEYNOTE: "High Performance Computing in a World of Embedded Intelligence", Steve Keckler, NVIDIA</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>10:00 - 10:30</td>
<td>Coffee Break</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>10:30 - 12:00</td>
<td>CASES: Neural Networks Optimization</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>10:30 - 12:00</td>
<td>CODES+ISSS: Embedded and IoT Applications</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>10:30 - 12:00</td>
<td>EMSOFT: Modeling and Design I</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>12:00 - 12:30</td>
<td>Poster Session</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td>Lunch</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>13:30 - 15:00</td>
<td>CASES: Accelerator Design</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>13:30 - 15:00</td>
<td>CODES+ISSS: Memory and Storage Systems</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>13:30 - 15:00</td>
<td>EMSOFT: Verification and Runtime Monitoring</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>15:00 - 15:30</td>
<td>Poster Session & Coffee Break</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>15:30 - 17:00</td>
<td>Special Session: The Information Processing Factory - a Paradigm for Long-term Dependable Systems</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>15:30 - 17:00</td>
<td>CODES+ISSS: Embedded Machine Learning</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>15:30 - 17:00</td>
<td>EMSOFT: Timing, Scheduling and Parallel Execution</td>
<td>KC 405/406, KC 914, KC 905/907</td>
</tr>
<tr>
<td>17:00 - 17:30</td>
<td>Poster Session</td>
<td>Eisner Lubin Auditorium</td>
</tr>
</tbody>
</table>
Opening Session
Time: 8:15 - 9:00 | Room: Eisner Lubin Auditorium

Keynote: High Performance Computing in a World of Embedded Intelligence
Time: 9:00 - 10:00 | Room: Eisner Lubin Auditorium

Speaker:
Steve Keckler - NVIDIA, Corp.

The confluence of high-performance computing and massive training data sets has enabled machine learning algorithms to play a transformational role in many disciplines. While tremendous effort has been applied to both training and inference in datacenter settings, the world of embedded computing devices demands capabilities to perceive entities in a complex environment, understand their surroundings, and make intelligent decisions based on observations. Applications such as intelligent video analytics, autonomous vehicles, and robotics all have tremendous computational requirements, limited power budgets, and safety/privacy standards that must be met. This talk will describe requirements of these embedded intelligence workloads and opportunities for architecture and hardware/software co-design to provide the computational throughput within the requisite power envelopes. It will also discuss challenges for safety-critical systems and methods of understanding and mitigating such vulnerabilities. Finally, the talk will present an automated design methodology for customizing an architecture to the specific parameters of a machine learning application, enabling quick development of optimized ASIC designs.

Biography: Dr. Stephen W. Keckler is the Vice President of Architecture Research at NVIDIA and an Adjunct Professor of Computer Science at the University of Texas at Austin, where he served on the faculty from 1998-2012. His research interests include parallel computer architectures, high-performance computing, energy-efficient architectures, and embedded computing. Dr. Keckler is a Fellow of the ACM, a Fellow of the IEEE, an Alfred P. Sloan Research Fellow, and a recipient of the NSF CAREER award, the ACM Grace Murray Hopper award, the President’s Associates Teaching Excellence Award at UT-Austin, and the Edith and Peter O’Donnell award for Engineering. He earned a B.S. in Electrical Engineering from Stanford University and M.S. and Ph.D. degrees in Computer Science from the Massachusetts Institute of Technology.
Session 1A - CASES: Neural Networks Optimization

Time: 10:30 - 12:00 | Room: KC 405/406

Chair:
Umit Ogras - Arizona State Univ.

1A.1 **TF-NET: DEPLOYING SUB-BYTE DEEP NEURAL NETWORKS ON MICROCONTROLLERS**
Jiecao Yu - Univ. of Michigan
Andrew Lukefahr - Indiana Univ.
Reetuparna Das, Scott Mahlke - Univ. of Michigan

1A.2** AGGRESSIVE ENERGY REDUCTION FOR VIDEO INFERENCE WITH SOFTWARE-ONLY STRATEGIES**
Larissa Rozales Gonçalves - Univ. Federal do Rio Grande do Sul
Rafael Fão de Moura - Univ. Federal do Rio Grande do Sul
Luigi Carro - Univ. Federal do Rio Grande do Sul

1A.3 **COMPACT: ON-CHIP COMPRESSION OF ACTIVATIONS FOR LOW POWERSYSTOLIC ARRAY BASED CNN ACCELERATION**
Jeff Zhang, Parul Raj - New York Univ.
Shuayb Zarar, Amol Ambardekar - Microsoft
Siddharth Garg - New York Univ.

Session 1B - CODES+ISSS: Embedded and IoT Applications

Time: 10:30 - 12:00 | Room: KC 914

Chair:
Amlan Ganguly - Rochester Institute of Technology

Co-Chair:
Tosiron Adegbija - Univ. of Arizona

1B.1 **SWARILAM: PORTABLE ENERGY AND COST EFFICIENT EMBEDDED SYSTEM FOR GENOMIC PROCESSING**
Ram Mohanty, Hasindu Gamaarachchi, Andrew Lambert, Sri Parameswaran - Univ. of New South Wales

1B.2 **AUTHCROPPER: AUTHENTICATED IMAGE CROPPER FOR PRIVACY PRESERVING SURVEILLANCE SYSTEMS**
Jihye Kim - Kookmin Univ.
Jiwon Lee, Hankyung Ko, Donghwan Oh, Semin Han, Gwonho Jeong, Hyunok Oh - Hanyang Univ.

1B.3 **OPTODE DESIGN SPACE EXPLORATION FOR CLINICALLY-ROBUST NON-INVASIVE FETAL OXIMETRY**
Daniel D. Fong, Vivek J. Srinivasan, Kourosh Vali, Soheil Ghiasi - Univ. of California, Davis

Session 1C - EMSOFT: Modeling and Design I

Time: 10:30 - 12:00 | Room: KC 905/907

Chair:
Edward A. Lee - Univ. of California, Berkeley

1C.1** DERIVING EQUATIONS FROM SENSOR DATA USING DIMENSIONAL FUNCTION SYNTHESIS**
Sam Willis, Youchao Wang, Vasileios Tsoutsouras - Cambridge Univ.
Phillip Stanley-Marbell - Massachusetts Institute of Technology

1C.2 **A DUAL-MODE STRATEGY FOR PERFORMANCE-MAXIMISATION AND RESOURCE-EFFICIENT CPS DESIGN**
Xiaotian Dai, Wanli Chang, Shuai Zhao, Alan Burns - Univ. of York

1C.3 **COHERENT EXTENSION, COMPOSITION, AND MERGING OPERATORS IN CONTRACT MODELS FOR SYSTEM DESIGN**
Roberto Passerone - Univ. of Trento
İñigo İncér-Romeo, Alberto Sangiovanni Vincentelli - Univ. of California, Berkeley

* Denotes Best Paper Candidate
MONDAY, OCTOBER 14

Poster Session
* Indicates Best Paper Candidate

Session 2A - CASES: Accelerator Design

* Indicates Best Paper Candidate

Chair: Henri-Pierre Charles - CEA

Time: 12:00 - 12:30 | **Room:** Eisner Lubin Auditorium

Time: 13:30 - 15:00 | **Room:** KC 405/406

2A.1 **ECAX: BALANCING ERROR CORRECTION COSTS IN APPROXIMATE ACCELERATORS**
- Jorge Castro-Godínez - Karlsruhe Institute of Technology
- Muhammad Shafique - Vienna Univ. of Technology
- Joerg Henkel - Karlsruhe Institute of Technology

2A.2 **AN ULTRA-LOW ENERGY HUMAN ACTIVITY RECOGNITION ACCELERATOR FOR WEARABLE HEALTH APPLICATIONS**
- Ganapati Bhat, Yigit Tuncel, Sizhe An - Arizona State Univ.
- Hyung Gyu Lee - Daegu Univ.
- Umit Ogras - Arizona State Univ.

2A.3 **WORK-IN-PROGRESS: COMPUTATION OFFLOADING OF ACOUSTIC MODEL FOR CLIENT-EDGE-BASED SPEECH RECOGNITION**
- Young Min Lee, Joon-Sung Yang - Sungkyunkwan Univ.

2A.4 **WORK-IN-PROGRESS: FINE-GRAIN ACCELERATION USING RUNTIME INTEGRATED CUSTOM EXECUTION (RICE)**
- Leela Pakanati, John T. McMchen, Zachary Estrada - Rose-Hulman Institute of Technology

2A.5 **WORK-IN-PROGRESS: ECC MANAGEMENT WITH RATE COMPATIBLE LDPC CODE FOR NAND FLASH STORAGE**
- Seung-Ho Lim, Jae-Bin Lee, Geon-Myeong Kim - Hankuk Univ. of Foreign Studies

2A.6 **WORK-IN-PROGRESS: AUTOMATIC GENERATION OF APPLICATION-SPECIFIC FPGA OVERLAYS**
- Danielle Tchuinkou Kwadjo, Joel Mandebi Mbongue, Christophe Bobda - Univ. of Florida

2A.7 **WORK-IN-PROGRESS: RECONFIGURABLE ACCELERATOR ON FPGA FOR SCIENTIFIC COMPUTING**
Session 2B - CODES+ISSSS: Memory and Storage Systems
Time: 13:30 - 15:00 | **Room:** KC 914

Chair:
Jingtong Hu - Univ. of Pittsburgh

Co-Chair:
Andreas Gerstlauer - Univ. of Texas, Austin

2B.1 PREDICTNCOOL: LEAKAGE AWARE THERMAL MANAGEMENT FOR 3D MEMORIES USING A LIGHTWEIGHT TEMPERATURE PREDICTOR
Lokesh Siddhu - Indian Institute of Technology, Delhi
Preeti Ranjan Panda - Indian Institute of Technology Delhi

2B.2 RMW-F: A DESIGN OF RMW-FREE CACHE USING BUILT-IN NAND-FLASH FOR SMR STORAGE
Chenlin Ma - Hong Kong Polytechnic Univ.
Zhaoyan Shen - Shandong Univ.
Lei Han - Hong Kong Polytechnic Univ.
Zili Shao - Chinese Univ. of Hong Kong

2B.3 ENABLING SEQUENTIAL-WRITE-CONSTRAINED B+-TREE INDEX SCHEME TO UPGRADE SHINGLED MAGNETIC RECORDING STORAGE PERFORMANCE
Yu-Pei Liang - National Tsing Hua Univ.
Tseng-Yi Chen - Yuan Ze Univ.
Yuan-Hao Chang, Shuo-Han Chen - Academia Sinica
Kam-Yiu Lam - City Univ. of Hong Kong
Wei-Hsin Li, Wei-Kuan Shih - National Tsing Hua Univ.

Session 2C - EMSOFT: Verification and Runtime Monitoring
Time: 13:30 - 15:00 | **Room:** KC 905/907

Chair:
Borzoo Bonakdarpour - Iowa State Univ.

2C.1 EFFICIENT DECENTRALIZED LTL MONITORING FRAMEWORK USING TABLEAU TECHNIQUE
Omar Bataineh - Nanyang Technological Univ.
David Rosenblum - National Univ. of Singapore
Mark Reynolds - Univ. of West Alabama

2C.2 FPGA STREAM-MONITORING OF REAL-TIME PROPERTIES
Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, Hazem Torfah - Saarland Univ.

2C.3 WILL MY PROGRAM BREAK ON THIS FAULTY PROCESSOR? - FORMAL ANALYSIS OF HARDWARE FAULT ACTIVATIONS IN CONCURRENT EMBEDDED SOFTWARE
Levente Bajczi - Budapest Univ. of Technology and Economics
András Vorös - Massachusetts Institute of Technology
Vince Molnár - Budapest Univ. of Technology and Economics

* Indicates Best Paper Candidate
The number and complexity of embedded system platforms used in mixed-criticality applications are rapidly growing. They run large and evolving applications on heterogeneous multi-/many-core processing platforms requiring long term dependable operation. Examples include automated driving, smart buildings, industry 4.0, or personal medical devices. A 2016 ESWEEK special session gave an overview of state of the art in self-aware HW/SW system technology which could become an important basis for mastering complex dependable systems. The session presentations explained types and implementations of self-awareness and compared different approaches, including on-the-fly computing, self-aware platform control, and cross-layer self-awareness. One of the talks introduced the paradigm of an “Information Processing Factory” (IPF). An abstract concept at that time, IPF has been further elaborated and became the foundation of a US-German research initiative for research into detailed solutions and applications. IPF applies principles inspired by factory management to the continuous operation and optimization of highly-integrated embedded systems. A general objective is identifying a sweet spot between a maximum of autonomy among IPF constituent components and a minimum of centralized control in order to ensure guaranteed service even under strict safety and availability requirements. Emphasis is on intensive self-diagnosis for early detection of degradation and imminent failures combined with unsupervised platform self-adaptation to meet performance and safety targets. The initiative developed into a research cluster that is jointly funded by the NSF and DFG. The cluster exploits a variety of technologies including proactive reconfiguration to mitigate the risk of failures, self-optimization, and self-identification using learning classifiers, and chip-level operation with flexible boundaries between critical and best effort regions, all guided by a self-aware planning component. A large many-core multi-OS simulation platform provides the means for in-depth cross-layer experiments.

3A.1 INTRODUCTION TO THE IPF PLATFORM AND RESEARCH CLUSTER
Rolf Ernst - Technische Univ. Braunschweig

3A.2 PROACTIVE SELF-DIAGNOSIS AND TASK MIGRATION FOR SAFETY-CRITICAL APPLICATIONS
Eberle A. Rambo, Thawra Kadeed, Rolf Ernst - Technische Univ. Braunschweig

3A.3 IPF RUNTIME VERIFICATION
Minjun Seo, Fadi Kurdahi - Univ. of California, Irvine

3A.4 REFLECTIVE SUPERVISORY CONTROL IN HIERARCHICAL MACHINE LEARNING
Bryan Donyanavard, Caio Batista de Melo, Biswadip Maity, Kasra Moazzemi, Kenneth Stewart, Saehanseul Yi, Amir M. Rahmani, Nikil Dutt - Univ. of California, Irvine

3A.5 HARDWARE-BASED LEARNING CLASSIFIERS FOR MIXED-CRITICAL ENVIRONMENTS
Nguyen Anh Vu Doan, Florian Maurer, Anmol Surhonne, Thomas Wild, Andreas Herkersdorf - Technische Univ. München
Session 3B - CODES+ISSS: Embedded Machine Learning

* Indicates Best Paper Candidate

Chair:
Janardhan Doppa - Washington State Univ.

3B.1 ACHIEVING SUPER-LINEAR SPEEDUP ACROSS MULTI-FPGA FOR REAL-TIME DNN INFERENCE

Weiwen Jiang - Univ. of Pittsburgh
Edwin Sha - East China Normal Univ.
Xinyi Zhang - Univ. of Pittsburgh
Lei Yang - Chongqing Univ.
Qingfeng Zhuge - East China Normal Univ.
Yiyu Shi - Univ. of Notre Dame
Jingtong Hu - Univ. of Pittsburgh

3B.2 ACHIEVING LOSSLESS ACCURACY WITH LOSSY PROGRAMMING FOR EFFICIENT NEURAL-NETWORK TRAINING ON NVM-BASED SYSTEMS

Wei-Chen Wang - Macronix International Co., Ltd.
Yuan-Hao Chang - Academia Sinica
Tei-Wei Kuo - National Taiwan Univ.
Chien-Chung Ho - National Chung Cheng Univ.
Yu-Ming Chang - National Taiwan Univ.
Hung-Sheng Chang - Macronix International Co., Ltd.

3B.3 DWMACC: ACCELERATING SHIFT-BASED CNNS WITH DOMAIN WALL MEMORIES

Zhengguo Chen, Quan Deng - National Univ. of Defense Technology
Nong Xiao - Sun Yat-sen Univ.
Kirk Pruhs, Youtao Zhang - Univ. of Pittsburgh

* Indicates Best Paper Candidate
Session 3C - EMSOFT: Timing, Scheduling and Parallel Execution

Time: 15:30 - 17:00 | **Room:** KC 905/907

Chair:
Houssam Abbas - Oregon State Univ.

3C.1 THERMAL-AWARE SCHEDULING FOR INTEGRATED CPUS-GPU PLATFORMS
Youngmoon Lee - Univ. of Michigan
Hoonsung Chwa - Daegu Gyeongbuk Institute of Science and Technology
Kang G. Shin - Univ. of Michigan

3C.2 TIMING-ANOMALY FREE DYNAMIC SCHEDULING OF CONDITIONAL DAG TASKS ON MULTI-CORE SYSTEMS
Peng Chen, Xu Jiang, Qingqiang He - Hong Kong Polytechnic Univ.
Weichen Liu - Nanyang Technological Univ.
Nan Guan - Hong Kong Polytechnic Univ.

3C.3 WORK-IN-PROGRESS: PROGRAMS WITH IRONCLAD TIMING GUARANTEES
Marten Lohstroh - Univ. of California, Berkeley
Martin Schoeberl - Technical Univ. of Denmark
Mathieu Jan - CEA
Edward Wang, Edward A. Lee - Univ. of California, Berkeley

3C.4 WORK-IN-PROGRESS: AN ILP FRAMEWORK FOR ENERGY OPTIMIZED SCHEDULING FOR WEAKLY-HARD REAL-TIME SYSTEMS
Jaishree Mayank, Niraj Kumar, Arijit Mondal - Indian Institute of Technology Patna

3C.5 WORK-IN-PROGRESS: WHY STATISTICAL POWER MATTERS FOR PROBABILISTIC REAL-TIME
Federico Reghenzani - Politecnico di Milano
Luca Santinelli - ONERA
William Fornaciari - Politecnico di Milano

3C.6 WORK-IN-PROGRESS: DAPHNE - AN AUTOMOTIVE BENCHMARK SUITE FOR PARALLEL PROGRAMMING MODELS ON EMBEDDED HETEROGENEOUS PLATFORMS
Lukas Sommer, Leonardo Solis-Vasquez, Florian Stock, Andreas Koch - Technische Univ. Darmstadt

Poster Session

Time: 17:00 - 17:30 | **Room:** Eisner Lubin Auditorium

* Indicates Best Paper Candidate

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 10:00</td>
<td>KEYNOTE: "Health Monitoring with Machine Learning and Wireless Sensors", Dina Katabi, MIT</td>
<td>Eisner Lubin Auditorium</td>
<td>Room: Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>10:00 - 10:30</td>
<td>Coffee Break</td>
<td>Eisner Lubin Auditorium</td>
<td>Room: Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>10:30 - 12:00</td>
<td>CASES: Interconnect Design, CODES+ISSS: Domain Specific Optimizations, EMSOFT: Verification and Testing, Special Session IoMT: Cyber-Physical Monitoring, Diagnosis, Treatment Analysis and Online Therapy</td>
<td>Eisner Lubin Auditorum</td>
<td>Room: Eisner Lubin Auditorium (Posters related to the papers presented Tuesday after lunch will be on display in the poster session on Wednesday 10:00 - 10:30)</td>
</tr>
<tr>
<td>12:00 - 12:30</td>
<td>Poster Session</td>
<td>Eisner Lubin Auditorum</td>
<td>Room: Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td>Lunch</td>
<td>Eisner Lubin Auditorum</td>
<td>Room: Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>13:30 - 15:00</td>
<td>CASES: Emerging Technologies, CODES+ISSS: Adaptive and Intermittent Embedded Systems, EMSOFT: Modeling and Design II, Special Session IoMT: Deciphering the Brain: From Mathematical Models to Computing Platforms for Cyber-Human Autonomy Symbiosis</td>
<td>Eisner Lubin Auditorum</td>
<td>Room: Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>15:00 - 15:15</td>
<td>Break</td>
<td>Eisner Lubin Auditorum</td>
<td>Room: Eisner Lubin Auditorium (Posters related to the papers presented Tuesday after lunch will be on display in the poster session on Wednesday 10:00 - 10:30)</td>
</tr>
<tr>
<td>15:15 - 16:45</td>
<td>CASES: Embedded Systems Design, CODES+ISSS: Reliability, Security, and Timing, EMSOFT: Hybrid Systems, Special Session IoMT: Security, Privacy, Dependability, Reliability and Resiliency in IoMT</td>
<td>Eisner Lubin Auditorum</td>
<td>Room: Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>17:30 - 22:00</td>
<td>Social Event - Carmine’s Restaurant in Times Sq & Broadway Show</td>
<td>Eisner Lubin Auditorum</td>
<td>Room: Eisner Lubin Auditorium</td>
</tr>
</tbody>
</table>
TUESDAY, OCTOBER 15

Keynote: Health Monitoring with Machine Learning and Wireless Sensors

Time: 9:00 - 10:00 | Room: Eisner Lubin Auditorium

Speaker: Dina Katabi - MIT

This talk will introduce Emerald, a new wireless technology that uses machine learning for health monitoring in the home. The Emerald device is a Wi-Fi-like box that transmits low power radio signals, and analyzes their reflections using neural networks. It infers the movements, breathing, heart rate, falls, sleep apnea, and sleep stages, of people in the home -- all without requiring them to wear any sensors or wearables. By monitoring a variety of physiological signals continuously and without imposing a burden on users, Emerald can automatically detect degradation in health, enabling early intervention and care. The talk will describe the underlying technology, and present results demonstrating Emerald’s promise in a geriatric population.

Biography: Dina Katabi is the Andrew & Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT. She is also the director of the MIT’s Center for Wireless Networks and Mobile Computing, a member of the National Academy of Engineering, and a recipient of the MacArthur Genius Award. Professor Katabi received her PhD and MS from MIT in 2003 and 1999, and her Bachelor of Science from Damascus University in 1995. Katabi’s research focuses on innovative mobile and wireless technologies with particular application to digital health. Her research has been recognized by the ACM Grace Murray Hopper Award, the SIGCOMM test of Time Award, the Faculty Research Innovation Fellowship, a Sloan Fellowship, the NBX Career Development chair, and the NSF CAREER award. Her students received the ACM Best Doctoral Dissertation Award in Computer Science and Engineering twice. Further, her work was recognized by the IEEE William R. Bennett prize, three ACM SIGCOMM Best Paper awards, an NSDI Best Paper award, and a TR10 award. Several start-ups have been spun out of Katabi’s lab such as PiCharging and Emerald.
Session 4A - CASES: Interconnect Design
Time: 10:30 - 12:00 | Room: KC 405

Chair:
Pietro Mercati - Intel Corp.

4A.1 CASCADE: HIGH THROUGHPUT DATA STREAMING VIA DECOUPLED ACCESS/EXECUTE CGRA
Dhananjaya Wijerathne, Zhaoying Li, Manupa Karunarathne, Anuj P Athania, Tulika Mitra - National Univ. of Singapore

4A.2 IS YOUR BUS ARBITER REALLY FAIR? RESTORING FAIRNESS IN AXI INTERCONNECTS FOR FPGA SOCS
Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, Giorgio Buttazzo - Scuola Superiore Sant’Anna Pisa

4A.3 ANALYTICAL PERFORMANCE MODELS FOR NOCS WITH MULTIPLE PRIORITY TRAFFIC CLASSES
Sumit K. Mandal - Arizona State Univ.
Raid Ayoub, Michael Kishinevsky - Intel Corp.
Umit Ogras - Arizona State Univ.

Session 4B - CODES+ISSS: Domain Specific Optimizations
Time: 10:30 - 12:00 | Room: KC 802

Chair:
Preeti Panda - Indian Institute of Technology, Delhi

Co-Chair:
Ishan Thakkar - Univ. of Kentucky

4B.1 DMAZERUNNER: EXECUTING PERFECTLY NESTED LOOPS ON DATAFLOW ACCELERATORS
Shail Dave - Arizona State Univ.
Youngbin Kim - Yonsei Univ.
Sasikanth Avancha - Intel Corp.
Kyoungwoo Lee - Yonsei Univ.
Aviral Shrivastava - Arizona State Univ.

4B.2 COMPOSITIONAL DESIGN OF MULTI-ROBOT SYSTEMS CONTROL SOFTWARE ON ROS
Stefano Spellini - Univ. di Verona
Michele Lora - Singapore Univ. of Technology and Design
Franco Furmi - Univ. di Verona
Sudipta Chattopadhyay - Singapore Univ. of Technology and Design

4B.3 WORK-IN-PROGRESS: A SIMD-AWARE PRUNING TECHNIQUE FOR CONVOLUTIONAL NEURAL NETWORKS WITH MULTI-SPARSITY LEVELS
Jeonggyu Jang, Kyusik Choi, Hoeseok Yang - Ajou Univ.

4B.4 WORK-IN-PROGRESS: BPNET: BRANCH-PRUNED CONDITIONAL NEURAL NETWORK FOR SYSTEMATIC TIME-ACCURACY TRADEOFF IN DNN INFERENCE
Kyungchul Park, Youngmin Yi - Univ. of Seoul

4B.5 WORK-IN-PROGRESS: A SIMULATION FRAMEWORK FOR DOMAIN-SPECIFIC SYSTEM-ON-CHIPS
Samet Egemen Arda, Anish NK, Ahmet Alper Goksoy - Arizona State Univ.
Joshua Mack, Nirmal Kumbhare - Univ. of Arizona
Anderson Sartor - Carnegie Mellon Univ.
Ali Akoglu - Univ. of Arizona
Radu Marculescu - Carnegie Mellon Univ.
Umit Ogras - Arizona State Univ.

4B.6 WORK-IN-PROGRESS: EAST-DNN: EXPEDITING ARCHITECTURAL SIMULATIONS USING DEEP NEURAL NETWORKS
Arko Dutt - Nanyang Technological Univ.
Govind Narasimman, Lin Jie, Vijay Ramaseshan Chandrasekhar - I2R, A*STAR Singapore
Mohamed M. Sabry - Nanyang Technological Univ.

4B.7 WORK-IN-PROGRESS: A CONCEPT OF A HARDWARE DESIGN ENVIRONMENT WITH THE FUNCTIONAL LANGUAGE ELIXIR
Hideki Takase, Kentaro Matsui - Kyoto Univ.
Yoshihiro Ueno - Delight Systems, Co., Ltd.
Masakazu Mori - Karabiner Technology, Inc.
Yuki Hisae, Susumu Yamazaki - Univ. of Kitakyushu

* Indicates Best Paper Candidate
Session 4C - EMSOFT: Verification and Testing

Time: 10:30 - 12:00 | **Room**: KC 905/907

Chair: Renato Mancuso - Boston Univ.

4C.1* STATISTICAL VERIFICATION OF HYPERPROPERTIES FOR CYBER-PHYSICAL SYSTEMS

Yu Wang, Mojtaba Zarei - Duke Univ.
Borzoo Bonakdarpour - Iowa State Univ.
Miroslav Pajic - Duke Univ.

4C.2* POLAR: FUNCTION CODE AWARE FUZZ TESTING OF ICS PROTOCOL

Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao - Tsinghua Univ.
Xun Jiao - Villanova Univ.
Jiaguang Sun - Tsinghua Univ.

4C.3 STRUCTURAL TEST COVERAGE CRITERIA FOR DEEP NEURAL NETWORKS

Youcheng Sun - Univ. of Oxford
Xiaowei Huang - Univ. of Liverpool
Daniel Kroening - Univ. of Oxford
James Sharp, Matthew Hill, Rob Ashmore - Defence Science and Technology Laboratory

* Indicates Best Paper Candidate
Special Session 4D - IoMT: Cyber-Physical Monitoring, Diagnosis, Treatment Analysis, and Online Therapy

* Indicates Best Paper Candidate

TUESDAY, OCTOBER 15

Poster Session

Time: 12:00 - 12:30 | Room: Eisner Lubin Auditorium

* Indicates Best Paper Candidate
Session 5A - CASES: Emerging Technologies

Time: 13:30 - 15:00 | Room: KC 405

Chair:
Ryan Kim - Colorado State Univ.

5A.1 ENABLING AND EXPLOITING PARTITION-LEVEL PARALLELISM (PALP) IN PHASE CHANGE MEMORIES
Shihao Song, Anup Das - Drexel Univ.
Onur Mutlu - ETH Zurich
Nagarajan Kandasamy - Drexel Univ.

5A.2 SYNTERFACE: EFFICIENT CHIP-TO-WORLD INTERFACING FOR FLOW-BASED MICROFLUIDIC BIOCHIPS USING CONTROL-PIN MINIMIZATION
Aditya Sridhar, Mohamed Ibrahim, Krishnendu Chakrabarty - Duke Univ.

5A.3 WORK-IN-PROGRESS: PORTING NEW VERSATILE VIDEO CODING TRANSFORMS TO A HETEROGENEOUS GPU-BASED TECHNOLOGY
Manuel Floriano Vázquez, Anup Saha, Rafael Medina Morillas, Miguel Chavarrias, Fernando Pescador del Oso - Univ. Politécnica de Madrid

5A.4 WORK-IN-PROGRESS: MITIGATING WRITE DISTURBANCE IN PHASE CHANGE MEMORY ARCHITECTURES
Chao-Hsuan Huang, Ishan Thakkar - Univ. of Kentucky

5A.5 WORK-IN-PROGRESS: SEQUENCE-CRAFTER: SIDE-CHANNEL ENTROPY MINIMIZATION TO THWART TIMING-BASED SIDE-CHANNEL ATTACKS
Abhijit Dhaville, Sahil Bhat, Setareh Rafatirad, Houman Homayoun, Sai Manoj Pudukotai Dinakarao - George Mason Univ.

5A.6 WORK-IN-PROGRESS: SAT TO SAT-HARD CLAUSE TRANSLATOR
Rakibul Hassan, Sai Manoj Pudukotai Dinakarao, Houman Homayoun, Setareh Rafatirad - George Mason Univ.

5A.7 WORK-IN-PROGRESS: MICROARCHITECTURAL EVENTS AND IMAGE PROCESSING-BASED HYBRID APPROACH FOR ROBUST MALWARE DETECTION
Sanket Shukla, Gaurav Kolhe, Sai Manoj PD, Setareh Rafatirad - George Mason Univ.

5A.8 WORK-IN-PROGRESS: FLEXIBLE GROUP-LEVEL PRUNING OF DEEP NEURAL NETWORKS FOR FAST INSTRUCTION ON MOBILE GPUs
Kwangbae Lee, Hoseung Kim, Hayun Lee, Dongkun Shin - Sungkyunkwan Univ.

Session 5B - CODES+ISSS: Adaptive and Intermittent Embedded Systems

Time: 13:30 - 15:00 | Room: KC 802

Chair:
Andreas Gerstlauer - Univ. of Texas, Austin

Co-Chair:
Amlan Ganguly - Rochester Institute of Technology

5B.1* ACCUMULATIVE DISPLAY UPDATING FOR INTERMITTENT SYSTEMS
Hashan Roshantha Mendis, Pi-Cheng Hsiu - Academia Sinica

5B.2 FLORA: FLOORPLAN OPTIMIZER FOR RECONFIGURABLE AREAS IN FPGAS
Biruk B. Seyoum - Scuola Superiore Sant’Anna
Alessandro Biondi, Giorgio Buttazzo - Scuola Superiore Sant’Anna

5B.3 HESSLE-FREE: HETEROGENEOUS SYSTEMS LEVERAGING FUZZY CONTROL FOR RUNTIME RESOURCE MANAGEMENT
Kasra Moazzemi, Biswadip Maity, Saehanseul Yi, Amir M. Rahmani, Nikil Dutt - Univ. of California, Irvine

* Indicates Best Paper Candidate
Session 5C - EMSOFT: Modeling and Design II
Time: 13:30 - 15:00 | Room: KC 905/907

Chair:
Marc Pouzet - Université Pierre et Marie Curie

5C.1 GRAPH-BASED MODELING, SCHEDULING, AND VERIFICATION FOR INTERSECTION MANAGEMENT OF INTELLIGENT VEHICLES
Yi-Ting Lin, Hsiang Hsu, Shang-Chien Lin, Chung-Wei Lin, Iris Hui-Ru Jiang - National Taiwan Univ.
Changliu Liu - Carnegie Mellon Univ.

5C.2 SPECIFICATION MINING AND ROBUST DESIGN UNDER UNCERTAINTY: A STOCHASTIC TEMPORAL LOGIC APPROACH
Jyotirmoy Deshmukh, Panagiotis Kyriakis, Paul Bogdan - Univ. of Southern California

5C.3 WORK-IN-PROGRESS: POWERMONITOR: DESIGN PATTERN FOR MODELLING ENERGY-AWARE EMBEDDED SYSTEMS
Michael Uelschen, Marco Schaarschmidt, Christian Fuhrmann, Clemens Westerkamp - Univ. of Applied Sciences at Osnabrueck

5C.4 WORK-IN-PROGRESS: DELAY BOUND FUNCTION FOR CYBER-PHYSICAL SYSTEMS
Akramul Azim - Univ. of Ontario Institute of Technology

5C.5 WORK-IN-PROGRESS: PHYSICS-BASED SOFTWARE ANALYSIS FOR SAFETY-CRITICAL EMBEDDED APPLICATIONS
Philipp Göttlich - ETAS GmbH
Hans-Christian Reuss - Univ. of Stuttgart

5C.6 WORK-IN-PROGRESS: VERIFIABLY SAFE SCUBA DIVING USING COMMODITY SENSORS
Viren Bajaj, Karim Elmaaroufi - Carnegie Mellon Univ.
Nathan Fulton - Massachusetts Institute of Technology

* Indicates Best Paper Candidate
A fundamental challenge in neuroscience is to uncover the principles governing complex interactions between the brain and its external environment. The development of functional neuroimaging techniques and tools from graph theory, network science, and computational neuroscience have markedly expanded opportunities to study the intrinsic organization of brain activity. However, many current computational models are fundamentally limited by little to no explicit assessment of the brain’s constant and crucial interactions with external stimuli. Moreover, the complex multiscale spatiotemporal dynamics exhibited by brain activity makes the modeling, analysis and discovery of therapeutic strategies harder, highlighting new challenges for Internet-of-Medical-Things targeting the brain.

To address these limitations, this special session discusses the following pioneering approaches: (1) By leveraging concepts from dynamical, control systems and fractal theories, we describe a new suite of mathematical modeling of brain activity that provides new and more efficient strategies for understanding healthy and disease regimes. We discuss the design of EEG-based non-invasive brain machine interfaces and the use of multi-dimensional fractal dynamic models for predicting the brain state for specific tasks. (2) To treat several neurological disorders (e.g., alleviating symptoms of Parkinson’s disease), we present the design of energy efficient deep brain stimulation (DBS) devices. We discuss the development of open and closed-loop DBS controllers, based on our physiological Basal Ganglia Model (BGM) and a hardware platform with a fully programmable interface exposing (a) functional (continuous) electrical potentials for validation through simulation and device testing, and (b) logical signals for discrete event-based controller analysis.

(3) We discuss the joint estimation of the intrinsic organization of brain activity and extrinsic stimuli. We demonstrate the utility of this scheme by accurately estimating unknown external stimuli in a synthetic example. Next, we examine brain activity at rest and task for 99 subjects from the Human Connectome Project, and find significant task-related increases in the estimated external inputs showing high similarity to known task regressors. Together, our embodied model of brain activity provides an avenue to gain deeper insight into the relationship between cortical functional dynamics and their drivers.

(4) Finally, we describe a spatiotemporal fractal parallel algorithm to efficiently analyze brain activity data and discuss the design of a machine-learning-inspired wireless network-on-chip (WiNoC)-based manycore architecture for handling the compute- and communication-intensive nature of the brain-machine-body-interface application.

Throughout the entire special session, we will highlight numerous open mathematical, algorithmic and hardware implementation related challenges that remain to be addressed by the IoT research community.

5D.1 TOWARDS PERSONALIZED REAL-TIME CLOSED-LOOP BRAIN-MACHINE-BRAIN NEUROTECHNOLOGIES

Sergio Pequito - Rensselaer Polytechnic Institute

5D.2 DESIGN OF EFFICIENT DEEP BRAIN STIMULATION DEVICES

Miroslav Pajic - Duke Univ.

5D.3 A DYNAMICAL SYSTEMS FRAMEWORK TO UNCOVER THE DRIVERS OF LARGE-SCALE CORTICAL ACTIVITY

Arian Ashourvan - Penns Center for Neuroengineering and Therapeutics and the Penn Epilepsy Center, Univ. of Penns

5D.4 NETWORK-ON-CHIP-ENABLED MANYCORE ARCHITECTURES FOR BRAIN-MACHINE-INTERFACE APPLICATIONS

Partha Pande - Washington State Univ.
Session 6A - CASES: Embedded Systems Design

Time: 15:15 - 16:45 | Room: KC 405

Chair:
Siddharth Garg - New York Univ.

6A.1* OUTPUT-BASED INTERMEDIATE REPRESENTATION FOR TRANSLATION OF TEST PATTERN PROGRAMS
Minsu Kim, Jeong-keun Park - Seoul National Univ.
Sungyeol Kim, Insu Yang, Hyunsoo Jung - Samsung Electronics Co., Ltd
Soo-Mook Moon - Seoul National Univ.

6A.2 READY: A FINE-GRAINED MULTITHREADING OVERLAY FRAMEWORK FOR MODERN CPU-FPGA DATAFLOW APPLICATIONS
Lucas Braganca da Silva, Ricardo Ferreira, Michael Canesche, Marcelo de Matos Menezes, Maria Dalila Vieira, Jeronimo Costa Penha - Univ. Federal de Victoria
Peter Jamieson - Miami Univ.
José Augusto Nacif - Univ. Federal de Victoria

6A.3 MULTI-OBJECTIVE EXPLORATION FOR PRACTICAL OPTIMIZATION DECISIONS IN BINARY TRANSLATION
Sunghyun Park - Univ. of Michigan
Youfeng Wu, Janghaeng Lee, Amir Aupov - Intel Corp.
Scott Mahlke - Univ. of Michigan

* Indicates Best Paper Candidate
Session 6B - CODES+ISSS: Reliability, Security, and Timing

Time: 15:15 - 16:45 | Room: KC 802

Chair:
Aviral Shrivastava - Arizona State Univ.

Co-Chair:
Kyoungwoo Lee - Yonsei Univ., Seoul

6B.1 UNIFIED TESTING AND SECURITY FRAMEWORK FOR WINOC-ENABLED MULTICORE CHIPS
Abhishek Vashist, Andrew Keats - Rochester Institute of Technology
Sai Manoj Pudukotai Dinakarao - George Mason Univ.
Amlan Ganguly - Rochester Institute of Technology

6B.2 CACHE LOCKING CONTENT SELECTION ALGORITHMS FOR ARINC-653 COMPLIANT RTOS
Alexy Torres Aurora Dugo, Jean-Baptiste Lefoul, Felipe Gohring de Magalhaes, Gabriela Nicolescu - Polytechnique Montréal
Dahman Assal - Mannarino Systems & Software Inc.

6B.3 WORK-IN-PROGRESS: A SCALABLE STOCHASTIC NUMBER GENERATOR FOR PHASE CHANGE MEMORY BASED IN-MEMORY STOCHASTIC PROCESSING
Supreeth Mysore Shivanandamurthy, Ishan Thakkar, Sayed Ahmad Salehi - Univ. of Kentucky

6B.4 WORK-IN-PROGRESS: CACHE-AWARE DYNAMIC SKEWED TREE FOR FAST MEMORY AUTHENTICATION
Saru Vig - Nanyang Technological Univ.
Rohan Juneja - Qualcomm
Siew Kei Lam, Jiang Guiyuan - Nanyang Technological Univ.

6B.5 WORK-IN-PROGRESS: DEVOS: A LEARNING-BASED DELAY MODEL OF VOLTAGE-SCALED CIRCUITS
Dongning Ma - Villanova Univ.
Siyu Shen - Boston Univ.
Xun Jiao - Villanova Univ.

6B.6 WORK-IN-PROGRESS: MITIGATING INTER-CHANNEL CROSSTALK NON-UNIFORMITY IN MICRORING FILTER ARRAYS OF PHOTONIC NOCS
Venkata Sai Praneeth Karempudi, Ishan Thakkar - Univ. of Kentucky

6B.7 WORK-IN-PROGRESS: PRECGC: PRE-MIGRATING VALID PAGES TO RELIEVE PERFORMANCE CLIFF OF 3D SOLID-STATE DRIVES
Yajuan Du, Wei Liu, Rui Wang, Yao Zhou - Wuhan Univ. of Technology
Jason Xue - City Univ. of Hong Kong

Session 6C - EMSOFT: Hybrid Systems

Time: 15:15 - 16:45 | Room: KC 905/907

Chair:
Xin Chen - Univ. of Dayton

6C.1 ROBUST REACHABLE SET: ACCOUNTING FOR UNCERTAINTIES IN LINEAR DYNAMICAL SYSTEMS
Bineet Ghosh - Univ. of North Carolina at Chapel Hill
Parasara Sridhar Duggirala - Univ. of North Carolina at Chapel Hill

6C.2 COUNTER-EXAMPLE GUIDED ABSTRACTION REFINEMENT FOR POLYHEDRAL PROBABILISTIC HYBRID SYSTEMS
Ratan Lal, Pavithra Prabhakar - Kansas State Univ.

6C.3 AGGREGATION STRATEGIES IN REACHABLE SET COMPUTATION OF HYBRID SYSTEMS: A SAFE SATELLITE RENDEZVOUS CASE STUDY
Parasara Sridhar Duggirala - Univ. of North Carolina at Chapel Hill
Stanley Bak - United States Air Force Research Lab

* Indicates Best Paper Candidate
Special Session 6D - IoMT: Security, Privacy, Dependability, Reliability, and Resiliency in IoMT

Time: 15:15 - 16:45 | Room: KC 406

Chair:
Paul Bogdan - USC

Organizers:
Soroush Abbaspour - IBM
Ramesh Karri - New York Univ.
Kevin Fu - Univ. of Michigan

In this special session, we will review recent challenges concerning the security of Internet-of-Medical-Things and discuss a few hot topics such as the blockchain and biochip technologies for healthcare.

6D.1 REIMAGINING HEALTHCARE: BLOCKCHAIN AND IOT USECASES
Soroush Abbaspour - IBM

6D.2 CYBERPHYSICAL BIOCHIP SECURITY
Ramesh Karri - New York, Univ.

6D.3 CYBERSECURITY FOR MEDICAL DEVICES
Kevin Fu - Univ. of Michigan

Social Event
Time: 17:30 - 22:00 | Carmine’s Restaurant in Times Sq & Broadway Show

The social event starts with dinner at Carmine’s Restaurant in Times Sq followed by a Broadway Show.
https://www.carminesnyc.com/locations/times-square

* Indicates Best Paper Candidate
WEDNESDAY, OCTOBER 16
SCHEDULE OF EVENTS

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 10:00</td>
<td>KEYNOTE "Cyber-Physical-Human Systems: Opportunities and Challenges", Pramod Khargonekar, UCI</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>10:00 - 10:30</td>
<td>Poster Session & Coffee Break</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>10:30 - 11:30</td>
<td>CASES: Real-time and Secure Systems Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODES+ISSS: Design Space Exploration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMSOFT: Control, Resource Allocation and Sensing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMSOFT: Systems Software</td>
<td></td>
</tr>
<tr>
<td>12:00 - 12:30</td>
<td>Poster Session</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td>Lunch</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>13:30 - 15:00</td>
<td>Special Session: Taming Extreme Heterogeneity via Machine Learning based Design of Autonomous Manycore Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODES+ISSS: System Modeling and Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMSOFT: Neural Networks and Safe Autonomy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACM Student Research Competition</td>
<td></td>
</tr>
<tr>
<td>15:00 - 15:30</td>
<td>Poster Session & Coffee Break</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>15:30 - 17:00</td>
<td>Special Session: Analyses and Architectures for Mixed-Critical Systems: Industry Trends and Research Perspective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODES+ISSS: IoT Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMSOFT: Resource Allocation and Scheduling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACM Student Research Competition</td>
<td></td>
</tr>
<tr>
<td>17:00 - 17:30</td>
<td>Poster Session</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>17:30 - 18:15</td>
<td>Awards Ceremony</td>
<td>Eisner Lubin Auditorium</td>
</tr>
<tr>
<td>18:15 - 19:45</td>
<td>Panel: The Internet of Medical Things (IoMT): What is the Future?</td>
<td>Eisner Lubin Auditorium</td>
</tr>
</tbody>
</table>
Keynote: Cyber-Physical-Human Systems: Opportunities and Challenges

Time: 9:00 - 10:00 | Room: Eisner Lubin Auditorium

Speaker:
Pramod Khargonekar - Univ. of California, Irvine

Cyber-physical systems are becoming increasingly integrated into the fabric of our society. Dramatic advances in machine learning are increasing the potential capabilities of cyber-physical systems leading to the emergence of cognitive cyber-physical systems. These trends are becoming visible and even accelerating across many sectors: transportation, manufacturing, medical, agricultural. As a result, there are significant important interactions between cyber-physical systems and humans at multiple levels of organization and behavior. This range spans from individuals to companies to society as a whole. In this talk, I will share my perspective on these developments and the emerging challenges and opportunities for the research community. I will make the case that we are on the cusp of the perhaps the most significant opportunity to pursue new research advances that will benefit society, in terms of economic prosperity, health and security, by meaningfully connecting the field of cyber-physical systems with machine learning on the one hand and social-behavioral-economic sciences on the other.

Biography: Pramod Khargonekar received B. Tech. Degree in electrical engineering in 1977 from the Indian Institute of Technology, Bombay, India, and M.S. degree in mathematics in 1980 and Ph.D. degree in electrical engineering in 1981 from the University of Florida, respectively. He was Chairman of the Department of Electrical Engineering and Computer Science from 1997 to 2001 and also held the position of Claude E. Shannon Professor of Engineering Science at The University of Michigan. From 2001 to 2009, he was Dean of the College of Engineering and Eckis Professor of Electrical and Computer Engineering at the University of Florida till 2016. After serving briefly as Deputy Director of Technology at ARPA-E in 2012-13, he was appointed by the National Science Foundation (NSF) to serve as Assistant Director for the Directorate of Engineering (ENG) in March 2013, a position he held till June 2016. Currently, he is Vice Chancellor for Research and Distinguished Professor of Electrical Engineering and Computer Science at the University of California, Irvine. His research and teaching interests are centered on theory and applications of systems and control. He has received numerous honors and awards including IEEE Control Systems Award, IEEE Baker Prize, IEEE CSS Axelby Award, NSF Presidential Young Investigator Award, AACC Eckman Award, and is a Fellow of IEEE, IFAC, and AAAS.
Session 7A - CASES: Real-time and Secure Systems Design

Time: 10:30 - 12:00 | Room: KC 405

Chair:
Anup Das - Drexel Univ.

7A.1 END-TO-END TIMING ANALYSIS OF SPORADIC CAUSE-EFFECT CHAINS IN DISTRIBUTED SYSTEMS
Marco Dürr, Georg von der Brüggen - Technische Univ. Dortmund
Kuan-Hsun Chen - Technical Univ. of Dortmund
Jian-Jia Chen - Technische Univ. Dortmund

7A.2 HIGH-LEVEL SYNTHESIS OF APPROXIMATE DESIGNS UNDER REAL-TIME CONSTRAINTS
Marcos Tomazzoli Leipnitz, Gabriel Luca Nazar - Univ. Federal do Rio Grande do Sul

7A.3 LOCKING THE DESIGN OF BUILDING BLOCKS FOR QUANTUM CIRCUITS
Samah Saeed - City College of New York
Robert Wille - Johannes Kepler Univ. Linz
Ramesh Karri - New York Univ.

Session 7B - CODES+ISSS: Design Space Exploration

Time: 10:30 - 12:00 | Room: KC 914

Chair:
Kyuongwoo Lee - Yonsei Univ.

Co-Chair:
Radu Marculescu - Carnegie Mellon Univ.

7B.1 MOOS: A MULTI-OBJECTIVE DESIGN SPACE EXPLORATION AND OPTIMIZATION FRAMEWORK FOR NOC ENABLED MANYCORE SYSTEMS
Aryan Deshwal, Nitthilan Kannappan, Jayakodi, Biresh Kumar Joardar, Jana Doppa, Partha Pratim Pande - Washington State Univ.

7B.2 IGOR, GET ME THE OPTIMUM! PRIORITIZING IMPORTANT DESIGN DECISIONS DURING THE DSE OF EMBEDDED SYSTEMS
Fedor Smirnov, Behnaz Pourmohseni, Friedrich-Alexander - Univ. Erlangen-Nürnberg
Michael Glaß - Ulm Univ.
Jürgen Teich - Univ. Erlangen-Nürnberg

7B.3 WORK-IN-PROGRESS: DESIGN SPACE EXPLORATION OF MULTI-TASK PROCESSING ON SPACE SHARED FPGAS
Umar Minhas, Roger Woods, Georgios Karakonstantis - Queens Univ. Belfast

7B.4 WORK-IN-PROGRESS: OFFLOADING CACHE CONFIGURATION PREDICTION TO AN FPGA FOR HARDWARE SPEEDUP AND OVERHEAD REDUCTION
Ruben Vazquez, Ann Gordon-Ross, Greg Stitt - Univ. of Florida

7B.5 WORK-IN-PROGRESS: A CASE FOR DESIGN SPACE EXPLORATION OF CONTEXT-AWARE ADAPTIVE EMBEDDED SYSTEMS
Rajesh Kedia, M. Balakrishnan, Kolin Paul - Indian Institute of Technology Delhi

7B.6 WORK-IN-PROGRESS: DRAMA: A HIGH EFFICIENT NEURAL NETWORK ACCELERATOR ON FPGA USING DYNAMIC RECONFIGURATION
Yang Yang, Chao Wang, Xuehai Zhou - Univ. of Science and Technology of China

7B.7 WORK-IN-PROGRESS: VIDEO ANALYTICS FROM EDGE TO SERVER
Jiashen Cao, Ramyad Hadidi, Joy Arulraj, Hyesoon Kim - Georgia Institute of Technology

* Indicates Best Paper Candidate
Session 7C - EMSOFT: Control, Resource Allocation and Sensing

Time: 10:30 - 12:00 | **Room:** KC 905/907

Chair:
Shan Lin - Stony Brook Univ.

7C.1 MEMORY-EFFICIENT MIXED-PRECISION IMPLEMENTATIONS FOR ROBUST EXPLICIT MODEL PREDICTIVE CONTROL
Mahmoud Salamati - Max Planck Institute
Rocco Salvia - Univ. of Utah
Eva Darulova - Max Planck Institute
Sadegh Soudjani - Newcastle Univ.
Rupak Majumdar - Max Planck Institute

7C.2 NUMERICAL REPRESENTATION OF DIRECTED ACYCLIC GRAPHS FOR EFFICIENT DATAFLOW EMBEDDED RESOURCES ALLOCATION
Florian Arrestier, Karol Desnos - Univ Rennes
Eduardo Juarez - Univ. Politecnica de Madrid
Daniel Menard - Univ Rennes

7C.3 WORK-IN-PROGRESS: ACHAL: BUILDING HIGHLY RELIABLE NETWORKED CONTROL SYSTEMS
Arpan Gujarati - Max Planck Institute for Software Systems
Malte Appel - Saarland Univ.
Bjorn Brandenburg - Max Planck Institute for Software Systems

7C.4 WORK-IN-PROGRESS: A NEUROMORPHIC APPROACH OF THE SOUND SOURCE LOCALIZATION TASK IN REAL-TIME EMBEDDED SYSTEMS

7C.5 WORK-IN-PROGRESS: PRIVATE RUNTIME VERIFICATION
Houssam Abbas - Oregon State Univ.

7C.6 WORK-IN-PROGRESS: COMMUNICATION AND SECURITY TRADE-OFFS FOR WEARABLE MEDICAL SENSOR SYSTEMS IN HOSPITALS
Jori Winderickx - Katholieke Univ. Leuven
Pierre Bellier - Univ. of Liege
Patrick Duflot - Centre Hospitalier Univ. de Liege
Dorothee Coppieters - Univ. of Liege
Nele Mentens - Katholieke Univ. Leuven

Indicates Best Paper Candidate
Session 7D - EMSOFT: Systems Software

Time: 10:30 - 12:00 | **Room:** KC 406

Chair:
Alessandro Biondi - Scuola Superiore Sant’Anna - Pisa

7D.1 HONEY, I SHRUNK THE ELFS: LIGHTWEIGHT BINARY TAILORING OF SHARED LIBRARIES
Andreas Ziegler, Julian Geus, Bernhard Heinloth, Timo Hönig - Friedrich-Alexander-Univ. Erlangen-Nürnberg
Daniel Lohmann - Leibniz Univ. Hannover

7D.2 MXU: TOWARDS PREDICTABLE, FLEXIBLE, AND EFFICIENT MEMORY ACCESS CONTROL FOR THE SECURE IOT
Runyu Pan, Gabriel Parmer - George Washington Univ.

7D.3 TREBLE: FAST SOFTWARE UPDATES BY CREATING AN EQUILIBRIUM IN AN ACTIVE SOFTWARE ECOSYSTEM OF GLOBALLY DISTRIBUTED STAKEHOLDERS
Keun Soo Yim, Iliyan Malchev, Andrew Hsieh, Dave Burke - Google

Poster Session

Time: 12:00 - 12:30 | **Room:** Eisner Lubin Auditorium

ACM Student Research Competition

Time: 13:30 - 15:00 | **Room:** KC 406

Organizers:
Renato Mancuso - Boston Univ.
Hyoseung Kim - Univ. of California, Riverside

* Indicates Best Paper Candidate
Special Session 8A: Taming Extreme Heterogeneity via Machine Learning based Design of Autonomous Manycore Systems

Time: 13:30 - 15:00 | Room: KC 405

Chair:
Siddharth Garg - NYU

Organizers:
Hai (Helen) Li - Duke Univ.
Janardhan Rao Doppa - Washington State Univ.
Paul Bogdan - Univ. of Southern California

The end of lithographic and exponential clock frequency scaling call for developing new programming models and self-optimizing strategies to discover the optimal degree of parallelization at runtime from old codes while seeing new data and take advantage of extreme heterogeneity (EH). Avoiding data movement requires in situ computing where data resides, and exploiting EH in emerging processing, communication, and memory technologies. The broad topic of extreme heterogeneity, programming models and design methodologies for autonomous massive manycore chips is actively pursued by a number of researchers worldwide, from a variety of different perspectives. Successful solutions will likely lead to a new computing paradigm that goes well beyond von-Neuman architectures and enable the design of self-programming and self-optimizing computing systems. In this special session, we will discuss the theoretical and algorithmic foundations for designing autonomous massive manycore platforms by considering the extreme heterogeneity in processing, communication and memory, the challenges of design space exploration and optimization, and appropriate programming models.

8A.1 PROCESS-IN-MEMORY ARCHITECTURE DESIGN AND OPTIMIZATION FOR DEEP LEARNING APPLICATIONS
Hai (Helen) Li - Duke Univ.

8A.2 DESIGN SPACE EXPLORATION AND OPTIMIZATION METHODOLOGIES FOR HETEROGENEOUS MANYCORE SYSTEMS
Janardhan Rao Doppa - Washington State Univ.

8A.3 NOVEL PROGRAMMING MODELS AND ALGORITHMIC FOUNDATIONS FOR DESIGNING SELF-PROGRAMMABLE HETEROGENEOUS COMPUTING ARCHITECTURES
Paul Bogdan - Univ. of Southern California

Session 8B - CODES+ISSS: System Modeling and Analysis

Time: 13:30 - 15:00 | Room: KC 914

Chair:
Ishan Thakkar - Univ. of Kentucky

8B.1 ANALYZING VARIABLE ENTANGLEMENT FOR PARALLEL SIMULATION OF SYSTEMC TLM-2.0 MODELS
Zhongqi Cheng, Rainer Doemer - Univ. of California, Irvine

8B.2 EFFICIENT TRACING METHODOLOGY USING THE MICRON AUTOMATA PROCESSOR
Minjun Seo, Fadi Kurdahi - Univ. of California, Irvine

8B.3 ALLERIA: AN ADVANCED MEMORY ACCESS PROFILING FRAMEWORK
Hadi Brais, Preeti Ranjan Panda - Indian Institute of Technology Delhi

* Indicates Best Paper Candidate
Session 8C - EMSOFT: Neural Networks and Safe Autonomy

Time: 13:30 - 15:00 | Room: KC 905/907

Chair:

Susmit Jha - SRI International

8C.1 SAFETY VERIFICATION OF CYBER-PHYSICAL SYSTEMS WITH REINFORCEMENT LEARNING CONTROL

Dung Tran, Feiyang Cei, Manzanas Lopez Diego, Patrick Musau, Taylor T Johnson, Xenofon Koutsoukos - Vanderbilt Univ.

8C.2 REACHNN: REACHABILITY ANALYSIS OF NEURAL-NETWORK CONTROLLED SYSTEMS

Chao Huang - Northwestern Univ.
Jiameng Fan, Wenchao Li - Boston Univ.
Xin Chen - Univ. of Dayton
Qi Zhu - Northwestern Univ.

8C.3 WORST-CASE SATISFACTION OF STL SPECIFICATIONS USING FEEDFORWARD NEURAL NETWORK CONTROLLERS: A LAGRANGE MULTIPLIERS APPROACH

Shakiba Yaghoubi, Georgios Fainekos - Arizona State Univ.

Poster Session & Coffee Break

Time: 15:00 - 15:30 | Room: Eisner Lubin Auditorium

ACM Student Research Competition

Time: 15:30 - 17:00 | Room: KC 406

Organizers:

Renato Mancuso - Boston Univ.
Hyoseung Kim - Univ. of California, Riverside

* Indicates Best Paper Candidate

Time: 15:30 - 17:00 | Room: KC 405

Chair:
Lars Bauer - Karlsruhe Institute of Technology

Organizers:
- Giorgio Buttazzo - Scuola Superiore Sant’Anna of Pisa
- Jörg Henkel - Karlsruhe Institute of Technology
- Dirk Ziegenbein - Robert Bosch GmbH

The ongoing Cyber-Physical Systems (CPS) and Internet of Things (IoT) revolution is leading to the ubiquity of applications with real-time requirements. Examples are smart grids, automated driving, collaborative robots, and many more. While in traditional real-time applications dedicated systems were built for each safety-critical functionality, this paradigm no longer suits emerging applications. The reason is that apart from traditional real-time requirements like a guaranteed worst-case execution time (WCET), tremendous performance requirements need to be fulfilled under additional non-functional constraints like power consumption, cost, space and weight. To fulfill these requirements, integrated mixed-criticality systems are designed instead of a dedicated system for each functionality. This integration entails that safety-critical tasks of one functionality are no longer run in isolation, but rather they share the same computing platform with low-critical or even non-critical software. A prime example of a domain that is currently undergoing the radical shift from the design of numerous isolated safety-critical systems to integrated mixed-criticality systems is the automotive industry. Where traditional automotive architectures consist of more than 100 single-function electronic control units, the industry is now moving to more centralized computing platforms. Thus, a heterogeneous mix of applications with different models of computation and with diverse requirements in terms of timing and safety criticality is run on hardware platforms that are increasingly heterogeneous, including specialized hardware accelerators, e.g., for deep learning.

When falling for old habits and designing mixed-critical systems with numerous fixed and single-function accelerators, however, the system becomes inflexible while the non-functional constraints are not fulfilled effectively. Instead, this special session will present ways to achieve the performance of application-specific accelerators while maintaining the system’s flexibility using runtime reconfiguration. The crux of runtime reconfiguration in mixed-critical system design is to unite a changing set of specialized hardware accelerators, which are shared between tasks of different criticality, with WCET and schedulability guarantees without compromising performance benefits.

This special session will target this problem from two directions: (i) real-time analysis and predictable run-time mechanisms, and (ii) hardware architectures. It will further highlight how advances in one direction lead to opportunities and challenges in the other. From this context, this special session will address the vast opportunities and challenges of major architectural trends like heterogeneous multi-processor system-on-chips in the design of mixed-critical systems.

This special session will benefit Univ. researchers/professors, students, industry professionals, and computing system designers who are interested in working on mixed-critical systems. And clearly, in the light of the increasing industrial demand and academic advances, this is an excellent time to revisit mixed-critical systems design in a special session.

9A.1 MIXED-CRITICALITY SYSTEMS IN PRACTICE: STATUS & CHALLENGES
Dirk Ziegenbein, Arne Hamann - Robert Bosch GmbH

9A.2 DEVELOPMENT AND ANALYSIS OF REAL-TIME APPLICATIONS ON HETEROGENEOUS FPGA-BASED SOC
Alessandro Biondi, Giorgio Buttazzo - Scuola Superiore Sant’Anna of Pisa

9A.3 RUNTIME-RECONFIGURABLE ARCHITECTURES FOR WCET GUARANTEES AND MIXED CRITICALITY
Lars Bauer, Marvin Damschen, Jörg Henkel - Karlsruhe Institute of Technology

* Indicates Best Paper Candidate
Session 9B - CODES+ISSS: Machine Learning for IoT

Time: 15:30 - 17:00 | Room: KC 914

Chair:
Sai Manoj Pudukotai Dinakarrao - George Mason Univ.

Co-Chair:
Fadi Kurdahi - Univ. of California, Irvine

9B.1 MEMORY- AND COMMUNICATION-AWARE MODEL COMPRESSION FOR DISTRIBUTED DEEP LEARNING INFERENCE ON IOT
Kartikeya Bhardwaj, Chingyi Lin, Anderson Luiz Sartor, Radu Marculescu - Carnegie Mellon Univ.

9B.2 QUALITY/LATENCY-AWARE REAL-TIME SCHEDULING OF DISTRIBUTED STREAMING IOT APPLICATIONS
Kamyar Mirzazad Barijough, Zhuoran Zhao, Andreas Gerstlauer - Univ. of Texas at Austin

9B.3 WORK-IN-PROGRESS: COOPERATIVE COMMUNICATION BETWEEN TWO TRANSIENTLY POWERED SENSORS BY REINFORCEMENT LEARNING
Yawen Wu, Zhenge Jia - Univ. of Pittsburgh
Fei Fang - Carnegie Mellon Univ.
Jingtong Hu - Univ. of Pittsburgh

9B.4 WORK-IN-PROGRESS: Q-LEARNING BASED ROUTING FOR TRANSIENTLY POWERED WIRELESS SENSOR NETWORK
Zhenge Jia, Yawen Wu, Jingtong Hu - Univ. of Pittsburgh

9B.5 WORK-IN-PROGRESS: DORY: LIGHTWEIGHT MEMORY HIERARCHY MANAGEMENT FOR DEEP NN INFERENCE ON IOT ENDNODES
Alessio Burrello - Univ. of Bologna
Francesco Conti - ETH Zurich
Angelo Garofalo, Davide Rossi - Univ. of Bologna
Luca Benini - ETH Zurich

Session 9C - EMSOFT: Resource Allocation and Scheduling

Time: 15:30 - 17:00 | Room: KC 905/907

Chair:
Wolfgang Schröder-Preikschat - Friedrich-Alexander-Universität (FAU)

This session will focus on Resource Allocation and Scheduling Papers

9C.1 CODE-INHERENT TRAFFIC SHAPING FOR HARD REAL-TIME SYSTEMS
Dominic Oehlert, Selma Saidi, Heiko Falk - Hamburg Univ. of Technology

9C.2 TECHNIQUES AND ANALYSIS FOR MIXED-CRITICALITY SCHEDULING WITH MODE-DEPENDENT SERVER EXECUTION BUDGETS
Muhammad Ali Awan, Konstantinos Bletsas - CISTER Research Centre
Pedro Souto - Univ. of Porto
Benny Akesson - Netherlands Organisation for Applied Scientific Research
Eduardo Tovar - CISTER Research Centre

9C.3 PARAMETRIC SCHEDULER CHARACTERIZATION
Joost van Pinxten, Marc Geilen, Twan Basten - Eindhoven Univ. of Technology

* Indicates Best Paper Candidate
Poster Session
Time: 17:00 - 17:30 | Room: Eisner Lubin Auditorium

Awards Ceremony
Time: 17:30 - 18:15 | Room: Eisner Lubin Auditorium

Panel: The Internet of Medical Things (IoMT): What is the Future?
Time: 18:15 - 19:45 | Room: Eisner Lubin Auditorium

Moderators:
Laura Pozzi - Università della Svizzera italiana (USI)
Amir Aminifar - École Polytechnique Fédérale de Lausanne

The Internet of Medical Things (IoMT) paves the foundations for intelligent and reliable personalized precision medicine. Grounded in the mathematical and physical modeling of human anatomy and physiology, it offers accurate multiscale medical monitoring through smart sensing, enabling continuous diagnosis via on-fly communication with medical experts. It provides hyperspectral and hyperdimensional processing and restores health through patient-specific actuation. This panel in the context of IoMT presents a complete set of industrial and academic experts to discuss with the ESWEK attendees about their view on the academic and industrial context for the future of this topic to develop a fully-functional personalized medicine context in the IoT era.

Panelists:
Mario Konijnenburg - IMEC - The Netherlands
Philippe Ryvlin - Univ. Hospital Lausanne (CHUV), Dept. of Clinical Neuroscience
Vaishnavi Ranganathan - Microsoft Research
Vijay Narayanan - Penn State Univ.
Mudhakar Srivatsa - IBM T.J. Watson Research Center
WORKSHOP SCHEDULE

NYU Center for CyberSecurity, 370 Jay Street, Brooklyn, NY
THURSDAY

AAIEA: Workshop Accelerating Artificial Intelligence for Embedded Autonomy
Thursday, October 17 | Time: 09:00 - 17:00 | Room: 1017 (370 Jay St. Brooklyn)

CyberCardia Medical CPS Workshop
Thursday, October 17 | Time: 09:00 - 17:30 | Room: 1012 (370 Jay St. Brooklyn)

EWiLi: Embedded Operating Systems Workshop
Thursday, October 17 | Time: 09:00 - 17:00 | Room: 1078 (370 Jay St. Brooklyn)

HENV: Workshop on Highly Efficient Neural Processing
Thursday, October 17 | Time: 09:00 - 17:00 | Room: 1013 (370 Jay St. Brooklyn)

INTESA: INTrelligent Embedded Systems Architectures and Applications Workshop
Thursday, October 17 | Time: 09:00 - 17:00 | Room: 1038 (370 Jay St. Brooklyn)

CyPhy/WESE: Workshop on Model-Based Design of Cyber Physical Systems, and Workshop on Embedded Systems Education
Thursday, October 19 - Friday, October 20 | Room: 1014 (370 Jay St. Brooklyn)

RSP: Workshop on Rapid System Prototyping
Thursday, October 19 - Friday, October 20 | Room: 370 Jay St. 1015

THURSDAY & FRIDAY

NOCS: 12th International Symposium on Networks-on-Chip
Thursday, October 17 - Friday, October 18 | Room: NYU AD Building
AAIEA Workshop: Accelerating Artificial Intelligence for Embedded Autonomy
Time: 9:00 - 17:00 | **Room:** 1017 (370 Jay St. Brooklyn)

Organizers:
Alessandro Pinto - United Technologies Research Center
Gerald Wang - United Technologies Research Center
Luca Carloni - Columbia Univ.

The Workshop on Accelerating Artificial Intelligence for Embedded Autonomy aims at gathering researchers and practitioners in the fields of autonomy, automated reasoning, planning algorithms, and embedded systems to discuss the development of novel hardware architectures that can accelerate the wide variety of AI algorithms demanded by advanced autonomous and intelligent systems. Topics of interest include hardware architectures and design methodologies to accelerate: Applications based on deep learning, skill-level and instinctive autonomy based on deep reinforcement learning, storage and retrieval of facts in knowledge bases, logical reasoning methods such as deduction, search for classical planning algorithms and Hierarchical Task Networks (HTN), inference in probabilistic models such as Bayesian networks and probabilistic logic, planning algorithms for Markov Decision Processes (MDP), and planning algorithms for Partial Observable Markov Decision Processes (POMDP).

CyberCardia Medical CPS Workshop
Time: 9:00 - 17:30 | **Room:** 1012 (370 Jay St. Brooklyn)

Organizers:
Scott A. Smolka - Stony Brook Univ.
Rahul Mangharam - Univ. of Pennsylvania
Oleg Sokolsky - Univ. of Pennsylvania
Samuel Huang - Univ. of Maryland, College Park

The CyberCardia Medical CPS workshop brings together researchers with a strong interest and background in cyber-physical systems (CPS). This one-day workshop is a capstone event for the NSF-funded CPS Frontier project, CyberCardia, which involves seven universities and centers. CyberCardia researchers conduct cross-disciplinary collaborative research to radically accelerate the pace of medical-device innovation, especially in the sphere of cardiac-device design.
EWiLi: Embedded Operating Systems Workshop

Time: 9:00 - 17:00 | Room: 1078 (370 Jay St. Brooklyn)

The Embedded Operating Systems Workshop (EWiLi) aims at presenting state-of-the-art research, experimentation, significant and original realizations that focus on the design and implementation of embedded operating systems in both academic and industrial worlds. Originally focusing on embedded Linux, the “Embed With Linux” (EWiLi) workshop has since then evolved to consider embedded operating systems in general.

Program Committee Chairs:
- Gedare Bloom - Univ. of Colorado at Colorado Springs
- Dionisio De Niz - SEI Carnegie Mellon Univ.

Steering Committee:
- Jalil Boukhobza - Lab-STICC/Univ. Western Brittany
- Marco D. Santambrogio - Politecnico di Milano
- Frank Singhoff - Lab-STICC/Univ. Western Brittany

Web and Publication Chair:
- Pierre Olivier - Virginia Tech

HENP: Workshop on Highly Efficient Neural Processing

Time: 9:00 - 17:00 | Room: 1013 (370 Jay St. Brooklyn)

Organizers:
- Yiran Chen - Duke Univ.
- Sungjoo Yoo - Seoul National Univ.

The International Workshop on Highly Efficient Neural Processing is a forum for presentations of state-of-the-art research in highly efficient neural processing. The workshop will combine both oral presentations and posters, which include invited talks from Facebook, Samsung Electronics, etc.
INTESA: INTeelligent Embedded Systems Architectures and Applications Workshop

Time: 9:00 - 17:00 | **Room:** 1038 (370 Jay St. Brooklyn)

Organizers:
Maurizio Martina - Politecnico di Torino
William Fornaciari - Politecnico di Milano

The INTESA workshop aims to give an up-to-date picture of intelligent embedded systems architectures and applications with emphasis on Smart IoT and Cyber Physical Systems, including hot topics such as accelerating deep learning. The workshop covers several aspects, from the hardware related ones to embedded software and application issues, being complementary to most of the topic addressed during the ESWEEK. From the market standpoint, scientific progress in this field are considered crucial to fuel a widespread diffusion of the potential benefits offered by the Industry 4.0 perspective. The goal of the event is to create cross-fertilization of ideas between application developers and platform providers with the participation of a mix between academic and industry people.
THURSDAY, OCTOBER 17 AND FRIDAY, OCTOBER 18

CyPhy/WESE: Workshop on Model-Based Design of Cyber Physical Systems, and Workshop on Embedded Systems Education

Time: 9:00 - 17:00 on Thursday | 9:00 - 13:30 on Friday | Room: 1014 (370 Jay St. Brooklyn)

Organizers:
- Walid Taha - Halmstad Univ.
- Martin Törngren - KTH Royal Institute of Technology

CyPhy: Cyber-physical systems (CPSs) combine computing and networking power with physical components. They enable innovation in a wide range of domains including robotics, smart homes, vehicles, and buildings; medical implants; and future-generation sensor networks. CyPhy’19 brings together researchers and practitioners working on modeling, simulation, and evaluation of CPS, based on a broad interpretation of these areas, to collect and exchange expertise from a diverse set of disciplines. The workshop places particular focus on techniques and components to enable and support virtual prototyping and testing.

WESE: The WESE workshop series aims to bring researchers, educators, and industrial representatives together to assess needs and share design, research, and experiences in embedded and cyber-physical systems education. WESE addresses questions such as “What skills and capabilities are required by the engineers of tomorrow”, “How should the corresponding educational programs be formed”, and “How can effective pedagogic methods be introduced in this domain”?

RSP: Workshop on Rapid System Prototyping

Time: 9:00 - 17:00 on Thursday | 9:00 - 13:30 on Friday | Room: 1015 (370 Jay St. Brooklyn)

The International Workshop on Rapid System Prototyping (RSP) emphasizes design experience sharing and collaborative approach between hardware and software research communities from industry and academy. It considers prototyping as an iterative design approach for embedded hardware and software systems. The RSP series of workshop aim at bridging the gaps in embedded system design between applications, architectures, tools, and technologies to achieve rapid system prototyping of emerging software and hardware systems.

Rapid System Prototyping workshop seeks original contributions related to this target, encompassing a wide scope ranging from formal methods for the verification of software and hardware systems to case studies of emerging embedded systems and technologies. The workshop proposes a two-day inspiring international forum for discussing the latest related innovations and research activities. The workshop program will include keynote speeches and technical papers on timely topics.

General Chairs:
- Frédéric Rousseau - TIMA, Univ. Grenoble-Alpes
- Kenneth Kent - Univ. of New Brunswick

Program Chairs:
- Brett H. Meyer - McGill Univ.
- Fabiano Hessel - PUCS, BR

International Symposium on Networks-on-Chip (NOCS)

Time: 9:00 - 17:00 | Room: NYU AD Building

The International Symposium on Networks-on-Chip (NOCS) is the premier event dedicated to interdisciplinary research on on-chip, chip-scale, and multichip package-scale communication technology, architecture, design methods, applications and systems.

NOCS brings together scientists and engineers working on NoC innovations and applications from interrelated research communities, including computer architecture, networking, circuits and systems, packaging, embedded systems, codesign, and design automation.

2019 General Chairs
- Paul Bogdan - Univ. of Southern California
- Cristina Silvano - Politecnico di Milano

2019 Technical Program Chairs:
- Sudeep Pasricha - Colorado State Univ.
- Ajay Joshi - Boston Univ.

Thank you to our Sponsor:
[09:00 – 09:15] Opening Remarks
Session Chair: Sudeep Pasricha, Colorado State Univ.
Interconnect Meets Architecture: On-Chip Communication in the Age of Heterogeneity
Partha Pratim Pande, Washington State Univ.

[10:15 – 10:45] Coffee Break

[10:45 – 12:00] Regular Paper Session I: NoC and Router Design
Session Chair: Andreas Herkersdorf, Technical Univ. of Munich
UBERNoC: Unified Buffer Energy-Efficient Router for Network-on-Chip
Hossein Farrokhbakht, Henry Kao and Natalie Enright
Jerger, Univ. of Toronto
Ghost Routers: Energy-Efficient Asymmetric Multicore Processors with Symmetric NoCs
Hyojun Son, KAIST, Hanjoon Kim, Furiosa A.I., Hao Wang, Univ. of Wisconsin-Madison, Nam Sung Kim, Samsung Electronics, and John Kim, KAIST
BINDU: Deadlock-Freedom with One Bubble in the Network
Mayank Parasar and Tushar Krishna, Georgia Institute of Technology

[12:00 – 12:30] Invited Talk
Session Chair: Ajay Joshi, Boston Univ.,
Accelerator Fabric in Facebook Zion Training System
John Kim, KAIST/Facebook

[12:30 – 14:00] Lunch

[14:00 – 15:15] Special Session 1: Interconnection Networks for Deep Neural Networks
Session Chair: Tushar Krishna, Georgia Institute of Technology
Session Organizers: Kun-Chih (Jimmy) Chen, National Sun Yat-sen Univ., Masoumeh (Azin) Ebrahimi, KTH Royal Institute of Technology
NoC-based DNN Accelerator: A Future Design Paradigm
Kun-Chih Chen, National Sun Yat-sen Univ., Masoumeh Ebrahimi, KTH Royal Institute of Technology, Ting-Yi Wang, National Sun Yat-sen Univ., and Yuch-Chi Yang, National Sun Yat-sen Univ.
Energy-Efficient and High-Performance NoC Architecture and Mapping Solution for Deep Neural Networks
Md Farhadur Reza and Paul Ampadu, Virginia Polytechnic Institute and State Univ.
Flow mapping and data distributing on mesh-based deep learning accelerator
Seyyedeh Yasaman Hosseini Mirmahaleh, Islamic Azad Univ, Tehran, Midia Reshadi, Islamic Azad Univ, Tehran, Hesam Shabani, Lehigh Univ., Xiaochen Guo, Lehigh Univ., and Nader Bagherzadeh, Univ. of California, Irvine

Session Chair: Sudeep Pasricha, Colorado State Univ.,
Reinforcement Learning based Interconnection Routing and Adaptive Traffic Optimization
Sheng-Chun Kao, Georgia Institute of Technology, Chao-Han Huck Yang, Georgia Institute of Technology, Pin-Yu Chen, IBM Watson AI Foundation Group, Xiaoli Ma, Georgia Institute of Technology, and Tushar Krishna, Georgia Institute of Technology.
Power efficient Photonic Network-on-Chip for a Scalable GPU
Janibul Bashir, Khushal Sethi and Smrutii R. Sarangi, Indian Institute of Technology, Delhi
CDMA-based Multiple Multicast Communications on WinOC for efficient parallel computing
Navonil Chatterjee, Lab-STICC, Université Bretagne Sud, Hemanta Kumar Mondal, NIT Durgapur, Rodrigo Cataldo, Lab-STICC, Université Bretagne Sud, and Jean-Philippe Diguet, Lab-STICC, Université Bretagne Sud
Channel Mapping Strategies for Effective Protection Switching in Fail-Operational Hard Real-Time NoCs
Max Koenen, Nguyen Anh Vu Doan, Thomas Wild and Andreas Herkersdorf, Technical Univ. of Munich
Multi-Carrier Direct Sequence Spread Spectrum Transceiver for WinOC
Joel Ortiz Sosa, Univ. Rennes, Inria, Olivier Senteys, Univ. Rennes, Inria, Christian Roland, Lab-STICC, Université Bretagne Sud, and Cedric Killian, Univ. Rennes, Inria
Detection and Prevention Protocol for Black Hole Attack in Network-on-Chip
Luka Daoud and Nader Rafia, Boise State Univ.
Analyzing Networks-on-Chip based Deep Neural Networks
Maurizio Palesi, Univ. of Catania, Giuseppe Ascia, Univ. of Catania, Davide Patti, Univ. of Catania, Salvatore Monteleone, Univ. of Catania, Vincenzo Catania, Univ. of Catania, and John Jose, Indian Institute of Technology Guwahati

Thank you to our Sponsor: Intel
THURSDAY OCT 17, 2019

Session Chair: Paul Ampadu, Virginia Polytechnic Institute and State Univ.
NoC-enabled Software/Hardware Co-Design Framework for Accelerating k-mer Counting

FRIDAY OCT 18, 2019

[09:00 – 10:00] Keynote 2
Session Chair: Ajay Joshi, Boston Univ.
Toward Fast Analysis and Exploration of Communication Fabrics
Raid Ayoub, Intel

[10:00 – 10:15] Coffee Break

Session Chair: Tushar Krishna, Georgia Institute of Technology
Speakers: Madhavan Swaminathan, Mohan Kathaperumal, Georgia Institute of Technology

Session Chair: Ishan Thakkar, Univ. of Kentucky
Engineering a specialized, high-performance network
Brian Towles, Brian Greskamp, D.E. Shaw Research

[12:30 – 14:00] Lunch

[14:00 – 15:40] Regular Paper Session 3: NoC Potpourri
Session Chair: Maurizio Palesi, Univ. of Catania
ClusCross: A New Topology for Silicon Interposer-Based Network-on-Chip
Hesam Shabani and Xiaochen Guo, Lehigh Univ., Distributed SDN Architecture for NoC-based Many-core SoCs
Marcelo Ruaro, PUCRS, Nedison Velloso, PUCRS, Axel Jantsch, TU Wien, Vienna, and Fernando Moraes, PUCRS
Approximate Nanophotonic Interconnects
Jaechul Lee, Univ Rennes, Inria, Cédric Killian, Univ. Rennes, Inria, Sébastien Le Beux, Concordia Univ., and Daniel Chillet, Univ Rennes, Inria

SMART++: Reducing cost and improving efficiency of multi-hop bypass in NoC routers
Iván Pérez, Enrique Vallejo and Ramón Beivide, Univ. of Cantabria, Santander
APEC: Improved Acknowledgement Prioritization through Erasure Coding in Bufferless NoCs
Michael Vonbun, Adrian Schiechel, Nguyen Anh Vu Doan, Thomas Wild and Andreas Herkersdorf, Technical Univ. of Munich

[19:00 – 21:00] Dinner (TBD)

THANK YOU TO OUR SPONSOR:

THANK YOU TO OUR SPONSOR:
ESWEEK COMMITTEES

GENERAL CHAIRS
Petru Eles | General Chair
Linköping Univ., SE

Tulika Mitra | Vice-General Chair
National Univ. of Singapore, SG

PAST CHAIR
Soonhoi Ha
Seoul National Univ., KR

PROGRAM CHAIRS
Akash Kumar | CASES Chair
Technical Univ. of Dresden, DE

Sriram Sankaranarayanan | EMSOFT Chair
Univ. of Colorado Boulder, US

Partha Pande | CASES Co-Chair
Washington State Univ., US

Timothy Bourke | EMSOFT Chair
Inria Paris, FR

Sudeep Pasricha | CODES+ISSS Chair
Colorado State Univ., US

Umit Ogras | Industry Liaison Committee Co-Chair
Arizona State Univ., US

Roman Lysecky | CODES+ISSS Co-Chair
Univ. of Arizona, US

ORGANIZATIONAL CHAIRS
Jürgen Teich | Awards Chair
Friedrich-Alexander-Univ. Erlangen-Nürnberg, DE

Ramesh Karri | ESWEEK Conference Chair
New York Univ., US

Andy Pimentel | Finance Chair
Univ. of Amsterdam, NL

Andreas Herkersdorf | Industry Liaison Committee Co-Chair
Technical Univ. of Munich, DE

Umit Ogras | Industry Liaison Committee Co-Chair
Arizona State Univ., US

Siddarth Garg | Local Arrangement Co-Chair
New York Univ., US

Ramesh Karri | ESWEEK Conference Chair
New York Univ., US

Andreas Herkersdorf | Industry Liaison Committee Co-Chair
Technical Univ. of Munich, DE

Shubham Rai | Social Media Chair
Technical Univ. of Dresden, DE

Paul Bogdan | Special Day Co-Chair
Univ. of Southern California, US

Insup Lee | Special Day Co-Chair
Univ. of Pennsylvania, US

Andreas Gerstlauer | Tutorials and Special Sessions Chair
Univ. of Texas Austin, US

Shubham Rai | Social Media Chair
Technical Univ. of Dresden, DE

Hoesook Yang | Web Chair
Ajou Univ., KR

Laura Pozzi | Workshop Chair
USI Lugano, CH
PROGRAM CHAIRS
Akash Kumar | CASES Chair
Technische Universitaet Dresden
Partha Pratim Pande | CASES Co-Chair
Washington State Univ.

PROGRAM COMMITTEE

Lars Bauer
Karlsruhe Institute of Technology

Swarup Bhunia
Univ. of Florida

Oliver Bringmann
Univ. of Tuebingen / FZI

Luca Carloni
Columbia Univ.

Jeronimo Castrillon
TU Dresden

Henri-Pierre Charles
CEA

Mainak Chaudhuri
Indian Institute of Technology Kanpur

Anup Das
Drexel Univ.

Jana Doppa
Washington State Univ.

Lide Duan
Univ. of Texas at San Antonio

Christophe Dubach
Univ. of Edinburgh

William Fornaciari
Politecnico di Milano - DEIB

Björn Franke
Univ. of Edinburgh

Dibakar Gope
Univ. of Wisconsin-Madison

Yuko Hara-Azumi
Tokyo Institute of Technology

Joerg Henkel
Karlsruhe Institute of Technology

Jingtong Hu
Univ. of Pittsburgh

Paolo Ienne
Ecole polytechnique Fédérale de Lausanne

Hrishikesh Jayakumar
Qualcomm Inc.

Timothy Jones
Univ. of Cambridge

Changhee Jung
Virginia Tech

Nachiket Kapre
Univ. of Waterloo

Ramesh Karri
New York, Univ

Hyesoon Kim
Georgia Tech

Ryan Kim
Colorado State Univ.

Andreas Krall
Vienna University of Technology

Jaejin Lee
Seoul National Univ.

Chang-Gun Lee
Seoul National Univ.

Hai (Helen) Li
Duke Univ./TUM-IAS

Zhonghai Lu
KTH Royal Institute of Technology

Scott Mahlke
Univ. of Michigan

Avinash Malik
Univ. of Auckland

Michail Maniatakos
New York Univ. Abu Dhabi

Gokhan Memik
Northwestern Univ.

Pietro Mercati
Univ. of California, San Diego

Tulika Mitra
National Univ. of Singapore

Orlando Moreira
Intel Corporation

Walid Najjar
Univ. of California, Riverside

Vijaykrishnan Narayanan
Penn State Univ.

Rupesh Nasre
IIT Madras

Sri Parameswaran
Univ. of New South Wales

Anuj Pathania
National Univ. of Singapore

Ardavan Pedram
Stanford Univ.

Christian Pilato
Politecnico di Milano

Laura Pozzi
Università Della Svizzera Italiana

Sai Manoj Pudukotai Dinakarrao
George Mason Univ.

Sanghamitra Roy
Utah State Univ.

Christian Schulte
KTH Royal Institute of Technology
PROGRAM COMMITTEE

Aviral Shrivastava
Arizona State Univ.

Amit Kumar Singh
Univ. of Essex

Thorsten Strufe
Technische Universität Dresden

Hiroyuki Tomiyama
Ritsumeikan Univ.

Hao Wang
Hygon R&D

Weng-Fai Wong
National Univ. of Singapore

SECONDARY REVIEWERS

Adrian Frischknecht
Heba Khdr

Alessandro Di Federico
Jae-Hun Kim

Alexander Blick
Jaehwan Jeong

B. Karunakar Reddy
Janghyun Son

Bashar Romanous
Jiecao Yu

Begum Egilmez
Jihye Kwon

Bijayalaxmi Panda
Jorge Castro-Godinez

Christoph Gerum
Jorgen Peddersen

Darshana Jayasinghe
Jovan Blanua

Davide Giri
Junghyun Son

Dimitrios Tychalas
Lana Josipovi

Dongjin Na
Luca Piccolboni

Dr. Benjamin Tan
Manupa Karunarathne

Dr. Kanad Basu
Martin Rapp

Eduardo Wachter
Michele Zanella

Emirhan Poyraz
Mikhail Asiatici and Jovan Blanua

Esha Sarkar
Mohammad Khayatian

Federico Reghenzani
Mohammad Shayan

Giovanni Ansalone
Mohammadreza Rezvani

Gokul Subramanian Ravi
Ohchul Kwon

Chia-Lin Yang
National Taiwan Univ.

Shouyi Yin
Tsinghua Univ.

Sungjoo Yoo
Seoul National Univ.

Bo Yuan
Univ. of California, Los Angles

Wei Zhang
Hong Kong Univ. of Science and Technology

Paul Walther

Prabal Basu

Pramesh Pandeya

Prashant Rajput

Prudhvi Gali

Rajesh Jayashankara Shridevi

Ren-Shuo Liu

Shail Dave

Siqi Wang

Somdip Dey

Sourav Sanyal

Sukanta Bhattacharjee

Tanfer Alan

Vanchinathan Venkataramani

Yi-Jung Chen

Youngeun Cho

Yuan-Hao Chang
CODES + ISSS COMMITTEES

PROGRAM CHAIRS
Sudeep Pasricha | CODES+ISSS Chair
Colorado State Univ.

Roman Lysecky | CODES+ISSS Co-Chair
Univ. of Arizona

PROGRAM COMMITTEE
Tosiron Adegbija
Univ. of Arizona

Mohammad Al Faruque
Univ. of California Irvine

David Atienza
École Polytechnique Fédérale de Lausanne (EPFL)

Lars Bauer
Karlsruhe Institute of Technology

Giovanni Beltrame
Polytechnique Montreal

Christophe Bobda
Univ. of Florida

Paul Bogdan
Univ. of Southern California

Eli Bozorgzadeh
Univ. of California, Irvine

Oliver Bringmann
Univ. of Tuebingen / FZI

Wanli Chang
Univ. of York

Yuan-Hao Chang
Academia Sinica

Yiran Chen
Duke Univ.

Robert P. Dick
Univ. of Michigan and Stryd

Rainer Doemer
Univ. of California, Irvine

Jana Doppa
Washington State Univ.

Nikil Dutt
Univ. of California, Irvine

Petru Eles
Linkoping Univ.

Xin Fang
Northeastern Univ.

Fabrizio Ferrandi
Politecnico di Milano

Franco Fummi
Universita’ di Verona

Andreas Gerstlauer
The Univ. of Texas at Austin

Swaroop Ghosh
Pennsylvania State Univ.

Tony Givargis
Univ. of California, Irvine

Dimitris Gizopoulos
Univ. of Athens

Michael Glaß
Ulm Univ.

Kees Goossens
Eindhoven Univ. of Technology

Ann Gordon-Ross
Univ. of Florida

Daniel Grosse
Univ. of Bremen/DFKI

Xiaochen Guo
Lehigh Univ.

Soonhoi Ha
Seoul National Univ.

Frank Hannig
Friedrich-Alexander Univ. Erlangen-Nürnberg

Christian Haubelt
Univ. of Rostock
CODES + ISSS COMMITTEES

PROGRAM COMMITTEE

Houman Homayoun
George Mason Univ.

Reiley Jeyapaul
ARM Research

Soontae Kim
KAST

Ryan Kim
Colorado State Univ.

Fadi Kurdahi
Univ. of California, Irvine

Luciano Lavagno
Politecnico di Torino

Sébastien Le Beux
Lyon Institute of Nanotechnology

Jenq-Kuen Lee
National Tsing Hua Univ.

Kyoungwoo Lee
Yonsei Univ.

Youn-Long Lin
National Tsing Hua Univ.

Weichen Liu
Nanyang Technological Univ.

Enrico Macii
Politecnico di Torino

Grant Martin
Cadence Design Systems

Hiroki Matsutani
Keio Univ.

Nele Mentens
KU Leuven

Brett Meyer
McGill Univ.

Prabhat Mishra
Univ. of Florida

Wolfgang Mueller
Univ. of Paderborn

Daniel Mueller-Gritschneider
Technical Univ. of Munich

Mahdi Nikdast
Colorado State Univ.

Umit Ogras
Arizona State Univ.

Hyunok Oh
Hanyang Univ

Alex Orailoglu
UC San Diego

Gianluca Palermo
Politecnico di Milano

Maurizio Palesi
Univ. of Catania

Preeti Ranjan Panda
IIT Delhi

Partha Pratim Pande
Washington State Univ.

Andy Pimentel
Univ. of Amsterdam

Ilia Polian
Univ. of Stuttgart

Massimo Poncino
Politecnico di Torino

Louis Noel Pouchet
Ohio State Univ.

Graziano Pravazetti
Univ. of Verona

Francesco Regazzoni
ALARI

Marco D. Santambrogio
Politecnico di Milano

Zili Shao
The Chinese Univ. of Hong Kong

Aviral Shrivastava
Arizona State Univ.

Sandeep Shukla
Indian Institute of Technology Kanpur

Amit Kumar Singh
Univ. of Essex

Todor Stefanov
Leiden Univ.

Greg Stitt
Univ. of Florida

Sander Stuijk
Eindhoven Univ. of Technology

Fatemeh Tehranipoor
San Francisco State Univ.

Jürgen Teich
Friedrich-Alexander-Univ. Erlangen-Nurnberg

Ishan Thakkar
Univ. of Kentucky

Hiroyuki Tomiyama
Ritsumeikan Univ.

Frank Vahid
Univ. of California, Riverside

Eugenio Villar
Univ. of Cantabria

Jiang Xu
Hong Kong Univ. of Science and Technology

Jason Xue
Hong Kong Univ. of Science and Technology

Ming-Chang Yang
The Chinese Univ. of Hong Kong

Chengmo Yang
Univ. of Delaware

Haibo Zeng
Virginia Tech
SECONDARY REVIEWERS

Bijoy A. Jose
Isaar Ahmad
Amir Aminifar
Delaram Amiri
Hussam Amrouch
Emad Arasteh
Abdullah Ash Saki
Nikolaos Athanasios
Anagnostopoulos
Arita Bagchi
Mahesh Balasubramanian
Caio Batista
Benjamin Beichler
Alberto Bocca
Yannick Boekle
Rolando Brondolin
Niklas Bruns
Jorge Castro-Godinez
Stefano Centomo
Subodha Charles
Yukai Chen
Fan Chen
Shuo-Han Chen
Zhongqi Cheng
Sarthake Chowdhary
Patrick Cronin
Alessandro Danese
Florenc Demrozi
Benoit Denkinger
Somdip Dey
Sumit Diware
Ras Dwivedi
Darren Eck
Thomas Ekow Haywood-Dadzie
Hasan Erdem Yantir
Mohammed Fouda
Enrico Fraccaroli
Alessandro Frigerio
Salman Gaith
Prudhvi Gali
Paul Gessler
Samuele Germiniani
Christoph Gerum
Florian Grützmacher
Qing Guo
Mojtaba Haghi
Muhammad Hassan
Christian Heidorn
Vladimir Herdt
Fateme Hosseini
Nasim Imtiaz Khan
Arman Iranfar
Daniele Jahier Pagliari
Neetu Jindal
Prachi Joshi
Jinhyo Jung
Minchoel Kang
Nima Karimian
B. Karunakar Reddy
Emad Kasaeyan Naeini
Rajesh Kedia
Oliver Keszöcze
Hoda Khouzani
Youngbin Kim
Jessung Kim
Jongho Kim
Florian Klemme
Kyle Kuan
Sina Labbaf
Jo Laufenberg
Myoungjun Lee
Junghyuk Lee
Jiwon Lee
Wonyoung Lee
Martin Letras
Alexandre Levisse
Ang Li
Junde Li
Yu-Pei Liang
Ankur Limaye
Ekdeep Lubana
Konstantin Lübeck
Yangdi Lyu
Biswadip Maity
Joel Mandebi Mbongue
Jiachen Mao
Mohammadreza Mehrabian
Daniel Mendoza
Svetlana Minakova
Kamyar Mirzazad Barjou
Kasra Moazzemi
Luca Mocerino
Junhyung Moon
Karthikeyan Nagarajan
Mahesh Nanjundappa
Hamid Nejatollahi
Kai Neubauer
Erman Nghonda
Elbruz Ozen
Ali Pahlevan
Jacopo Panerati
Sagar Parekh
Jungwoo Park
Miguel Peón-Quirós
Pascal Pieper
Patrick Plagwitz
Hector Posadas
Jens Rudolf
Dolly Sapra
Sina Sayyah
Tobias Schwarz
Minjun Seo
Kenshu Seto
Sina Shahhosseini
Lokesh Siddhu
Fedor Smirnov
Hwisoo So
Linghao Song
Stefano Spellini
Sebastian Stieber
Luca Stornaiuolo
Pramod Subramanyan
Michael Tao-Yi Lee
Rasool Tavakoli
Danielle Tchioukou Kwadjo
Sakshi Tiwari
Che-Wei Tsao
Victor van Santen
Nick Verchok
Sara Vinco
Eduardo Wachter
Shibo Wang
Taylor Whitaker
Chun-Feng Wu
Yao Xiao
Wei Yan
Chaofei Yang
Saehanseul Yi
Jia Zhou
EMSOFT COMMITTEES

PROGRAM CHAIRS
Sriram Sankaranarayanan | EMSOFT Chair
Univ. of Colorado, USA

Timothy Bourke | EMSOFT Chair
INRIA, France

PROGRAM COMMITTEE
Houssam Abbas
Oregon State Univ., USA

Stanley Bak
Safe Sk Analytics, USA

Ayca Balkan
Medtronic, USA

Guillaume Baudart
IBM, USA

Enrico Bini
University of Torino, Italy

Alessandro Biondi
Scuola Superiore Sant’Anna - Pisa (Italy)

Sergiy Bogomolov
Australian National Univ., Australia

Borzoo Bonakdarpour
Iowa State Univ., USA

Wanli Chang
Univ. of York, UK

Xin Chen
Univ. of Dayton, USA

David Cock
ETH Zurich, Switzerland

Dakshina Dasari
Robert Bosch, GmbH

Pallab Dasgupta
Indian Institute of Technology, Kharagpur

Dionisio de Niz
SEI, CMU, USA

Patricia Derler
National Instruments, USA

Ruediger Ehlers
Univ. of Bremen, USA

Rolf Ernst
TU Braunschweig, Germany

Georgios Faineikos
Arizona State Univ., USA

Vinod Ganapathy
Indian Institute of Science, India

Pierre-loic Garoche
ONERA, France

Gregor Goessier
INRIA, France

Nan Guan
The Hong Kong Polytechnic Univ., Hong Kong

Zhishan Guo
Univ. of Central Florida, USA

Ichiro Hasuo
National Institute of Informatics, Japan

Jean-Baptiste Jeannin
Univ. of Michigan, USA

Susmit Jha
SRI, USA

James Kapinski
Toyota, USA

Xenofon Koutsoukos
Vanderbilt Univ., USA

Edward Lee
Univ. of California, Berkeley

Jing Li
New Jersey Institute of Technology, USA

Shan Lin
Stonybrook Univ., USA

Renato Mancuso
Boston Univ., USA

Frank Mueller
North Carolina State Univ., USA

Mitra Nasri
TU Delft, The Netherlands

Geoffrey Nelissen
CIEST, ISEP, Portugal

Sam H. Noh
Ulsan National Institute of Science and Technology, Korea

Necmiye Ozay
Univ. of Michigan, USA

Claire Pagetti
ONERA, France

Marc Pouzet
Université Pierre et Marie Cune, France

Pavithra Prabhakar
Kansas State Univ., USA

Sylvie Putot
École Polytechnique, France

Partha Roop
Univ. of Auckland, New Zealand

Kristin Yvonne Rozier
Iowa State Univ., USA

Ramesh S
General Motors, USA

Indranil Saha
Indian Institute of Technology, Kanpur

Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität (FAU), Germany

Donatella Sciuto
Politecnico di Milano, Italy

Lothar Thiele
ETH Zurich, Switzerland
EMSOFT COMMITTEES

PROGRAM COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashutosh Trivedi</td>
<td>Univ. of Colorado, USA</td>
</tr>
<tr>
<td>Caterina Urban</td>
<td>ETH Zurich, Switzerland</td>
</tr>
<tr>
<td>Marcus Völp</td>
<td>Université du Luxembourg, Luxembourg</td>
</tr>
<tr>
<td>Bryan Ward</td>
<td>MIT Lincoln Laboratory</td>
</tr>
<tr>
<td>Gera Weiss</td>
<td>Ben Gurion Univ., Israel</td>
</tr>
<tr>
<td>Jason Xue</td>
<td>City Univ. of Hong Kong, Hong Kong</td>
</tr>
<tr>
<td>Bai Xue</td>
<td>Chinese Academy of Sciences, Beijing, China</td>
</tr>
<tr>
<td>Naijun Zhan</td>
<td>Chinese Academy of Sciences, Beijing, China</td>
</tr>
</tbody>
</table>

SECONDARY REVIEWERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdullah Jakaria</td>
<td>Feng-Sheng, Cheng</td>
<td>Nicolas Halbwachs</td>
<td>Nis Wechselberg</td>
</tr>
<tr>
<td>Adam Kostrzewa</td>
<td>Frédéric Boniol</td>
<td>Ouafae Lachhab</td>
<td>Pascal Raymond</td>
</tr>
<tr>
<td>Alain Girault</td>
<td>Goran Frehse</td>
<td>Phani Kishore Gadepalli</td>
<td>Pierre Roux</td>
</tr>
<tr>
<td>Alexander Schulz-Rosengarten</td>
<td>Gregorio Procissi</td>
<td>Riccardo Muradore</td>
<td>Robert Gifford</td>
</tr>
<tr>
<td>Alireza Abyaneh</td>
<td>Hamzah Abdelaziz</td>
<td>Saud Wasly</td>
<td>Runyu Pan</td>
</tr>
<tr>
<td>Arian Maghazeh</td>
<td>Han-Yi Lin</td>
<td>Sebastian Tobuschat</td>
<td>Saed Sadi</td>
</tr>
<tr>
<td>Arno Luppold</td>
<td>Huimin Cui</td>
<td>Selma Saidi</td>
<td>Shu-Hsien Liao</td>
</tr>
<tr>
<td>Aron Laszka</td>
<td>Insa Fuhrmann</td>
<td>Shweta Khare</td>
<td>Steven Smyth</td>
</tr>
<tr>
<td>Arvind Adimoolam</td>
<td>Jacques Combaz</td>
<td>Tadeus Prastowo</td>
<td>Tse-Yuan Wang</td>
</tr>
<tr>
<td>Avinash Malik</td>
<td>James Marshall</td>
<td>Ulf Ruegg</td>
<td>Valeriu Balaban</td>
</tr>
<tr>
<td>Bernardo Villalba Frias</td>
<td>Jianhua Zhao</td>
<td></td>
<td>Vincent Rahli</td>
</tr>
<tr>
<td>Borislav Nikolic</td>
<td>Jin Ro</td>
<td></td>
<td>Waqar Ali</td>
</tr>
<tr>
<td>Bradley Potteiger</td>
<td>Jin-Hyun Kim</td>
<td></td>
<td>Xiaoqing Jin</td>
</tr>
<tr>
<td>Bruno Bodin</td>
<td>Johannes Schlatow</td>
<td></td>
<td>Xin Chen</td>
</tr>
<tr>
<td>Cedric Lauradoux</td>
<td>Joseph Espy</td>
<td></td>
<td>Yi-Shen Chen</td>
</tr>
<tr>
<td>Che-Wei Tsao</td>
<td>Julien Forget</td>
<td></td>
<td>Yi-Ting Chen</td>
</tr>
<tr>
<td>Christoph Daniel Schulze</td>
<td>Junkil Park</td>
<td></td>
<td>Youcef Bouchebaba</td>
</tr>
<tr>
<td>Chuchu Fan</td>
<td>Jyotirmoy Deshmukh</td>
<td></td>
<td>Yu-Chuan Chang</td>
</tr>
<tr>
<td>Chun-Feng Wu</td>
<td>Kai Gemlau</td>
<td></td>
<td>Yuxin Ren</td>
</tr>
<tr>
<td>Chung-Yu Chen</td>
<td>Ken Butts</td>
<td></td>
<td>Zain Haj Hammadeh</td>
</tr>
<tr>
<td>Dagaen Golomb</td>
<td>Lei Bu</td>
<td></td>
<td>Zhenkai Zhang</td>
</tr>
<tr>
<td>Dai Gaoyang</td>
<td>Leonardo Ecco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David H. Bailey</td>
<td>Leonie Ahrendts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davide Bresolin</td>
<td>Linzhang Wang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deepak Gangadharan</td>
<td>Marc Boyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di Liu</td>
<td>Matthias Beckert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominic Oehlert</td>
<td>Michel Pignol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eberle Rambo</td>
<td>Mikko Roth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ezekiel Olamide Soremekun</td>
<td>Mischa Möstl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanxin Kong</td>
<td>Muhammad R. Soliman</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOCS COMMITTEE

2019 NOCS ORGANIZING COMMITTEE

General Chairs
Paul Bogdan
Univ. of Southern California

Cristina Silvano
Politecnico di Milano

Technical Program Chairs:
Sudeep Pasricha
Colorado State Univ.

Ajay Joshi
Boston Univ.

Publicity Chairs:
Mario Casu
Politecnico di Torino

Ryan Kim
Colorado State Univ.

Smruti Sarangi
IIT Delhi

2019 NOCS TECHNICAL PROGRAM COMMITTEE

Special Sessions/Tutorials/
Demos Chairs:
Tushar Krishna
Georgia Institute of Technology

Maurizio Palesi
Univ. of Catania

Web Chair:
Ishan Thakkar
Univ. of Kentucky

Publication Chair:
Akram Ben Ahmed
Keio Univ.

Local Arrangements Chair:
Christian Pilato
Politecnico di Milano

Industry Chairs:
Fabien Clermidy
CEA-LETI

Michael Kishinevsky
Intel Corporation

Steering Committee Chair:
Radu Marculescu
Carnegie Mellon Univ.

Akram Ben Ahmed
Keio Univ.

Alex Yakovlev
Newcastle Univ.

Amlan Ganguly
Rochester Institute of Technology

Avinash Kodi
Ohio Univ.

Axel Jantsch
Vienna Univ. of Technology

Cristina Silvano
Politecnico di Milano

Cristinel Ababei
Marquette Univ.

Davide Bertozzi
Univ. Ferrara

Giorgos Dimittrakopoulos
Democritus Univ. of Thrace

Dong Xiang
Tsinghua Univ.

Gabriela Nicolescu
Polytechnique Montréal

Shaahin Hessabi
Sharif Univ. of Technology

Andrè Ivanov
Univ. of British Columbia

Jana Doppa
Washington State Univ.

Jiang Xu
Hong Kong Univ. of Science and Technology

Jens Sparso
Technical Univ. of Denmark

Jürgen Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg

Kees Goossens
Eindhoven Univ. of Technology

Michihiro Koibuchi
National Institute of Informatics, JAPAN

Ahmed Louri
George Washington Univ.

Luca Carloni
Columbia Univ.

Martin Radetzki
Univ. of Stuttgart

Masoud Daneshtalab
Mälardalen Univ.

Hiroki Matsutani
Keio Univ.

Syed Minhaj Hassan
Qualcomm

Fernando Moraes
PUCRS – Polytechnic School

Maurizio Palesi
Univ. of Catania

Nicola Nicolici
McMaster Univ.

Chrysostomos Nicopoulos
Univ. of Cyprus

Weichen Liu
Nanyang Technological Univ. Singapore

Partha Pratim Pande
Washington State Univ.

Paul Bogdan
Univ. of Southern California

Li-Shiuan Peh
National Univ. of Singapore

Petru Eles
Linköping Univ.

Kees Goossens
Eindhoven Univ. of Technology

Michihiro Koibuchi
National Institute of Informatics, JAPAN

Ahmed Louri
George Washington Univ.

Luca Carloni
Columbia Univ.

Martin Radetzki
Univ. of Stuttgart

Masoud Daneshtalab
Mälardalen Univ.

Hiroki Matsutani
Keio Univ.

Syed Minhaj Hassan
Qualcomm

Fernando Moraes
PUCRS – Polytechnic School

Maurizio Palesi
Univ. of Catania

Nicola Nicolici
McMaster Univ.

Chrysostomos Nicopoulos
Univ. of Cyprus

Weichen Liu
Nanyang Technological Univ. Singapore

Partha Pratim Pande
Washington State Univ.

Paul Bogdan
Univ. of Southern California

Li-Shiuan Peh
National Univ. of Singapore

Petru Eles
Linköping Univ.

2019 NOCS COMMITTEE

2019 NOCS ORGANIZING COMMITTEE

General Chairs
Paul Bogdan
Univ. of Southern California

Cristina Silvano
Politecnico di Milano

Technical Program Chairs:
Sudeep Pasricha
Colorado State Univ.

Ajay Joshi
Boston Univ.

Publicity Chairs:
Mario Casu
Politecnico di Torino

Ryan Kim
Colorado State Univ.

Smruti Sarangi
IIT Delhi

2019 NOCS TECHNICAL PROGRAM COMMITTEE

Special Sessions/Tutorials/
Demos Chairs:
Tushar Krishna
Georgia Institute of Technology

Maurizio Palesi
Univ. of Catania

Web Chair:
Ishan Thakkar
Univ. of Kentucky

Publication Chair:
Akram Ben Ahmed
Keio Univ.

Local Arrangements Chair:
Christian Pilato
Politecnico di Milano

Industry Chairs:
Fabien Clermidy
CEA-LETI

Michael Kishinevsky
Intel Corporation

Steering Committee Chair:
Radu Marculescu
Carnegie Mellon Univ.

Akram Ben Ahmed
Keio Univ.

Alex Yakovlev
Newcastle Univ.

Amlan Ganguly
Rochester Institute of Technology

Avinash Kodi
Ohio Univ.

Axel Jantsch
Vienna Univ. of Technology

Cristina Silvano
Politecnico di Milano

Cristinel Ababei
Marquette Univ.

Davide Bertozzi
Univ. Ferrara

Giorgos Dimittrakopoulos
Democritus Univ. of Thrace

Dong Xiang
Tsinghua Univ.

Gabriela Nicolescu
Polytechnique Montréal

Shaahin Hessabi
Sharif Univ. of Technology

Andrè Ivanov
Univ. of British Columbia

Jana Doppa
Washington State Univ.

Jiang Xu
Hong Kong Univ. of Science and Technology

Jens Sparso
Technical Univ. of Denmark

Jürgen Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg

Kees Goossens
Eindhoven Univ. of Technology

Michihiro Koibuchi
National Institute of Informatics, JAPAN

Ahmed Louri
George Washington Univ.

Luca Carloni
Columbia Univ.

Martin Radetzki
Univ. of Stuttgart

Masoud Daneshtalab
Mälardalen Univ.

Hiroki Matsutani
Keio Univ.

Syed Minhaj Hassan
Qualcomm

Fernando Moraes
PUCRS – Polytechnic School

Maurizio Palesi
Univ. of Catania

Nicola Nicolici
McMaster Univ.

Chrysostomos Nicopoulos
Univ. of Cyprus

Weichen Liu
Nanyang Technological Univ. Singapore

Partha Pratim Pande
Washington State Univ.

Paul Bogdan
Univ. of Southern California

Li-Shiuan Peh
National Univ. of Singapore

Petru Eles
Linköping Univ.

Kees Goossens
Eindhoven Univ. of Technology

Michihiro Koibuchi
National Institute of Informatics, JAPAN

Ahmed Louri
George Washington Univ.

Luca Carloni
Columbia Univ.

Martin Radetzki
Univ. of Stuttgart

Masoud Daneshtalab
Mälardalen Univ.

Hiroki Matsutani
Keio Univ.

Syed Minhaj Hassan
Qualcomm

Fernando Moraes
PUCRS – Polytechnic School

Maurizio Palesi
Univ. of Catania

Nicola Nicolici
McMaster Univ.

Chrysostomos Nicopoulos
Univ. of Cyprus

Weichen Liu
Nanyang Technological Univ. Singapore

Partha Pratim Pande
Washington State Univ.

Paul Bogdan
Univ. of Southern California

Li-Shiuan Peh
National Univ. of Singapore

Petru Eles
Linköping Univ.
This is the age where 5G on your smartphone starts with Qualcomm.

Inventing the tech the world loves

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
NYU TANDON IS ENGINEERING

CREATIVE &

SMART,

CONNECTED &

SECURE,

SUSTAINABLE &

HEALTHY,

URBAN

COMMUNITIES

RIGHT HERE IN BROOKLYN!

#NYUTANDONMADE